مشكلات وتحديات انتشار الذكاء الاصطناعي التوليدي

أفضل الممارسات لتوظيفه في المؤسسات والشركات

مشكلات وتحديات انتشار الذكاء الاصطناعي التوليدي
TT

مشكلات وتحديات انتشار الذكاء الاصطناعي التوليدي

مشكلات وتحديات انتشار الذكاء الاصطناعي التوليدي

يتزايد اعتماد الشركات بسرعة على تكنولوجيا الذكاء الاصطناعي التوليدي لزيادة الإنتاجية والكفاءة، ولكن العديد منها لا يتخذ نهجاً استراتيجياً لتنفيذ هذه التكنولوجيا. ولذلك، يفشل العديد من المشاريع أو ينتهي بها الأمر إلى تكبد تكاليف أكثر بكثير مما ينبغي، من دون تحقيق العائد من الاستثمار.

يواجه قادة تقنية المعلومات العديد من العقبات الرئيسية في سبيل الاعتماد الفعال على تكنولوجيا الذكاء الاصطناعي التوليدي، بما في ذلك نقص المواهب، وضعف جودة البيانات، والافتقار إلى وجود إدارة شاملة للذكاء الاصطناعي، وتخفيف المخاطر والسيطرة عليها.

مشاكل مشاريع الذكاء الاصطناعي التوليدي

ووفقاً لتقرير صادر عن مؤسسة «غارتنر» للأبحاث فإنه وبحلول عام 2025، سيتم التخلي عما لا يقل عن 30 في المائة من مشاريع الذكاء الاصطناعي التوليدي، بعد أن تعجز بعض المؤسسات عن تقديم دليل على صحة المفهوم (لتوظيفه) بسبب تلك التحديات وغيرها.

من بين الأسباب الرئيسية الأخرى لفشل مشروع الذكاء الاصطناعي التوليدي، ارتفاع التكاليف وعدم وضوح القيمة التجارية، وفقاً لما ذكرته مؤسسة «غارتنر».

وفي ورقة بحثية حول أفضل 10 ممارسات لتطوير الذكاء الاصطناعي التوليدي عبر المؤسسة، أشارت مؤسسة «غارتنر» إلى أنه من أجل تحقيق النجاح، يجب على المنظمات منح الأولوية لقيمة الأعمال، والتركيز على محو الأمية بالذكاء الاصطناعي، والذكاء الاصطناعي المسؤول. كما ينبغي على المؤسسات تعزيز التعاون بين الوظائف، والتأكيد على التعلم المستمر لتحقيق نتائج ناجحة.

يقول آرون تشاندراسيكاران، المحلل ونائب الرئيس البارز لدى مؤسسة «غارتنر» في حديث نشرته مجلة «كومبيوتر وورلد»، إن أكبر التحديات التي تواجه المنظمات في مشاريع الذكاء الاصطناعي التوليدي هو النوعية الرديئة للبيانات الموجودة، ودمج البيانات ذات الصلة في سير عمل الذكاء الاصطناعي التوليدي، وحوكمة أنظمة الذكاء الاصطناعي.

برامج مسؤولة للذكاء الاصطناعي التوليدي

شرع العديد من الشركات بالفعل في اتخاذ خطوات لضمان نجاح مشاريع الذكاء الاصطناعي التوليدي. وبحلول عام 2027، ستكون أكثر من 50 في المائة من الشركات قد نفذت برنامجاً مسؤولاً لإدارة الذكاء الاصطناعي لمعالجة مخاطر الذكاء الاصطناعي التوليدي، بزيادة أقل من 2 في المائة عن اليوم، وفقاً لـ«غارتنر».

لطالما أشار تشاندراسيكاران وغيره من الخبراء إلى حقيقة أن معظم المؤسسات تفتقر إلى نظافة البيانات وتصنيفها وأمانها؛ إذ وعندما تقترن جودة البيانات السيئة بالنموذج اللغوي الكبير للذكاء الاصطناعي التوليدي فإنها تصبح ربما نفايات داخلة ونفايات خارجة؛ ذلك لأن منصات الذكاء الاصطناعي التوليدي تعد نظماً ليست سوى أكثر بقليل من مجرد محركات التنبؤ بالكلمات التالية أو الصور أو خط الترميز البرمجي، لذلك فهي تولد استجابات تستند إلى البيانات التي تمت تغذيتها بها.

نقص المواهب والمخاطر الكامنة

تشمل الأسباب الأخرى لمشاكل الذكاء الاصطناعي التوليدي الهندسة السريعة غير الفعالة (تدريب النماذج اللغوية الكبيرة)، والتجزئة غير الكافية أو عمليات استرداد المعلومات من نظم التوليد المُعزز المُسترد، إضافة إلى التعقيد الذي ينطوي عليه الضبط الدقيق لنموذج الذكاء الاصطناعي.

قال تشاندراسيكاران: «من الواضح أن العجز في مهارات وخبرات الذكاء الاصطناعي يؤثر سلباً على الشركات».

هناك أيضاً قائمة متزايدة من المخاطر المرتبطة بنشر الذكاء الاصطناعي. وتشمل تلك [المخاطر] قضايا الشفافية، والحوكمة، والنزاهة، التي قد تنشأ عندما لا تكون تطبيقات الذكاء الاصطناعي مبنية على إطار متين من المسؤولية.

لكن كما هو الحال مع أي تكنولوجيا جديدة، لا ينطوي الذكاء الاصطناعي التوليدي على مخاطر متأصلة فحسب، إنما ينطوي أيضاً على إمكانية تضخيم المخاطر القائمة. على سبيل المثال، يمكن أن يؤدي الدمج السيئ أو غير السليم لأدوات الذكاء الاصطناعي التوليدي مع أنظمة المؤسسة الأخرى إلى نشوء نقاط ضعف، مثل البيانات غير المؤمنة والأبواب الخلفية.

تتضمن الصعوبات أيضاً تخفيف تحيز الذكاء الاصطناعي التوليدي والهلاوس الصريحة، حيث تخرج أداة الذكاء الاصطناعي التوليدي تماماً عن المسار عند إنشاء استجابة لمطلب المستخدم.

وقال تشاندراسيكاران: «علاوة على ذلك، يظل قادة تكنولوجيا المعلومات قلقين بشأن حماية بياناتهم، مع مراعاة الحدود المُعَرَّفة بشكل غامض لتدريب النماذج والالتزامات القانونية المحتملة».

ارتفاع التكاليف المالية للذكاء الاصطناعي التوليدي

ولكن الشركات تعتقد أن فوائد الذكاء الاصطناعي التوليدي تفوق المخاطر.

وفقاً لما ذكره تشاندراسيكاران، فإن التكاليف الأولية لمشاريع الذكاء الاصطناعي التوليدي لا تكاد تُذكر، ولكنها يمكن أن تتصاعد بسرعة مع اتساع حالات الاستخدام، وتفاقمها بسبب القرارات الهيكلية السيئة، والافتقار إلى الخبرة في الاستدلال الأمثل، وإدارة التغيير غير الكافية، وبالتالي زيادة التكلفة الإجمالية لملكية الذكاء الاصطناعي التوليدي.

كشف استطلاعان منفصلان أجرتهما شركة «غارتنر»، العام الماضي، عن أن 78 في المائة من نحو 4000 من قادة تكنولوجيا المعلومات الذين شملهم الاستطلاع يعتقدون أن فوائد الذكاء الاصطناعي التوليدي تفوق مخاطر تطبيق التكنولوجيا. ولكن نظراً لارتفاع تكلفة التنفيذ، فإن تنفيذ عمليات نشر الذكاء الاصطناعي التوليدي في المرة الأولى بشكل صحيح يعد أمراً بالغ الأهمية لنجاحها.

وأضاف تشاندراسيكاران إن قياس قيمة تطبيقات الذكاء الاصطناعي التوليدي «محدد للغاية لحالة الاستخدام أو المجال أو الصناعة... الغالبية العظمى من التحسينات سوف تنعكس على المؤشرات الرئيسية للقيمة المالية في المستقبل، مثل الإنتاجية، ومدة الدورة، وتجربة العملاء، ورفع مهارات المبتدئين بصورة أسرع، وما إلى ذلك».

تحديد الفوائد المحتملة مقدماً

الخطوة الأولى في رحلة الذكاء الاصطناعي التوليدي هي تحديد إطار طموح الذكاء الاصطناعي للمؤسسة، وإجراء حوار استكشافي حول ما هو ممكن، وفقاً لـ«غارتنر». والخطوة التالية هي التماس حالات الاستخدام المحتملة التي يمكن تجريبها باستخدام تكنولوجيات الذكاء الاصطناعي التوليدي.

ما لم تُترجم فوائد الذكاء الاصطناعي التوليدي إلى خفض فوري في عدد الموظفين وغير ذلك من خفض التكاليف، فمن الممكن أن تتوقع المؤسسات تراكم الفوائد المالية ببطء أكبر مع مرور الوقت اعتماداً على كيفية استخدام القيمة المولدة.

على سبيل المثال، قال تشاندراسيكاران: «المؤسسة التي تكون قادرة على إنجاز المزيد بموارد أقل مع زيادة الطلب، لاستخدام عدد أقل من كبار الموظفين، وتقليل استخدام مقدمي الخدمات، وتحسين قيمة العملاء والموظفين، ما يؤدي إلى أعلى قدر من الاحتفاظ بهم... كلها فوائد مالية تنمو مع مرور الوقت».

عوامل نجاح الذكاء الاصطناعي التوليدي

سوف يعتمد تبني المؤسسات للذكاء الاصطناعي التوليدي على 6 عوامل، وفقاً لشركة «أندريسين هوروفيتزا» لرأس المال الاستثماري، والتي أصدرت مؤخراً دراسة بشأن تبني الذكاء الاصطناعي:

التكلفة والكفاءة

القدرة على تقييم ما إذا كانت فوائد استخدام النظم القائمة على الذكاء الاصطناعي التوليدي تفوق النفقات المرتبطة بها. ويمكن أن يؤدي التعامل معها وتخزين مجموعات البيانات الكبيرة إلى زيادة النفقات المتعلقة بالبنية التحتية والموارد الحاسوبية.

المعرفة والعمل القائم على العمليات

درجة عالية من المعرفة والعمل القائم على العمليات مقابل العمل الميداني والمادي فقط.

الاعتماد السحابي العالي

مستوى متوسط إلى عال من الاعتماد على السحابة الإلكترونية، في ضوء متطلبات البنية التحتية.

 انخفاض العبء التنظيمي والخصوصية

الوظائف أو الصناعات التي تخضع لتدقيق تنظيمي عال، أو المخاوف ذات الصلة بخصوصية البيانات، أو التحيز الأخلاقي ليست مرشحة جيدة لاعتماد الذكاء الاصطناعي التوليدي.

المواهب المتخصصة

مواهب قوية ذات معرفة تقنية وقدرات جديدة، ووجود مقدرة على المساعدة في تحويل القوى العاملة لتتأقلم سريعاً.

الملكية الفكرية واتفاقيات الترخيص والاستخدام

القدرة على تقييم اتفاقات وقيود الترخيص/الاستخدام، وصياغة ورصد متطلبات الامتثال ذات الصلة، والتفاوض على الاتفاقات المخصصة مع الموردين ذوي الصلة.


مقالات ذات صلة

الولايات المتحدة​ العلامة التجارية لشركة «أوبن إيه آي» (رويترز)

«أوبن إيه آي» تبدأ اختبار الإعلانات على «تشات جي بي تي»

أعلنت شركة «أوبن إيه آي» عبر مدونتها أن «تشات جي بي تي» بدأ، أمس، اختبار دمج الإعلانات في روبوت الدردشة الأكثر استخداماً في العالم، بتقنية الذكاء الاصطناعي.

«الشرق الأوسط» (باريس )
الاقتصاد شعار مجموعة «سوفت بنك» في طوكيو (أرشيفية - رويترز)

«سوفت بنك» تترقب أرباحاً كبيرة من استثمارها في «أوبن إيه آي»

من المتوقع أن تحقق مجموعة «سوفت بنك» اليابانية أرباحاً جيدة من استثمارها في «أوبن إيه آي» عند إعلان نتائجها الفصلية يوم الخميس.

«الشرق الأوسط» (طوكيو)
صحتك حين تتعلم الخوارزمية فهم العلة قبل النتيجة

الذكاء السببي في الطب: رؤية جديدة لعلاقة السبب والنتيجة

بناء خرائط أو نماذج تمثل العلاقات بين الأسباب والنتائج داخل النظام المدروس

د. عميد خالد عبد الحميد (لندن)
الاقتصاد يجلس أشخاص بالقرب من لوحة إلكترونية في بورصة إندونيسيا بجاكرتا (رويترز)

ارتفاع حاد في خروج رؤوس الأموال الأجنبية من الأسهم الآسيوية بداية فبراير

شهدت تدفقات رؤوس الأموال الأجنبية الخارجة من الأسهم الآسيوية ارتفاعاً حاداً في الأسبوع الأول من فبراير (شباط).

«الشرق الأوسط» (هونغ كونغ )

هل يشكل الذكاء الاصطناعي «تهديداً وجودياً لهوية الأطباء ورسالتهم»؟

هل يشكل الذكاء الاصطناعي «تهديداً وجودياً لهوية الأطباء ورسالتهم»؟
TT

هل يشكل الذكاء الاصطناعي «تهديداً وجودياً لهوية الأطباء ورسالتهم»؟

هل يشكل الذكاء الاصطناعي «تهديداً وجودياً لهوية الأطباء ورسالتهم»؟

عندما يحين وقت إجراء محادثة صعبة مع مريض يحتضر، حول تركيب أنبوب تغذية في جسمه، يتدرب الدكتور جوناثان تشين، طبيب الباطنية في جامعة ستانفورد، أولاً مع برنامج دردشة آلي. فهو يطلب من البرنامج أن يلعب دور الطبيب بينما يتقمص هو دور المريض، ثم يعكس الأدوار.

براعة الذكاء الاصطناعي الفائقة

يشعر الدكتور تشين بعدم الارتياح حيال ذلك، فبرنامج الدردشة الآلي بارعٌ في إيجاد طرق للتواصل مع المرضى. كما يعلم الأطباء أيضاً براعته في التشخيص وقراءة الصور والفحوص – بل إنه أفضل من كثير من الأطباء – وكذلك في الإجابة عن أسئلة المرضى عبر البوابات الإلكترونية وكتابة طلبات الاستئناف لشركات التأمين عند رفض دواء أو إجراء طبي.

ما هي وظيفة الطبيب؟

إذن، ما هي وظيفة الطبيب؟ يجيب تشين بأن برامج الذكاء الاصطناعي باتت تُشكل «تهديداً وجودياً» للأطباء؛ فهي «تُهدد هويتهم ورسالتهم».

ويتفق الدكتور هارلان كرومولز، طبيب القلب في جامعة ييل ومستشار برنامج OpenEvidence، وهو برنامج ذكاء اصطناعي للأطباء، مع هذا الرأي.

ويضيف كرومولز، وهو أيضاً أحد مؤسسي شركتين ناشئتين تستخدمان الذكاء الاصطناعي لتحليل الصور الطبية والبيانات الرقمية: «إن قدرة الذكاء الاصطناعي على التفكير والتشخيص تتجاوز بالفعل قدرات الأطباء».

الذكاء الاصطناعي بدأ يُغير ممارسات بعض الأطباء

وقد عمل الكثير من الأطباء الذين فكروا ملياً في دور الذكاء الاصطناعي في الطب، مع شركات متخصصة في هذا المجال. وتشين واحد من هؤلاء الأطباء، ويقول إنه والكثير من زملائه يضطرون إلى التساؤل: «متى سيحين الوقت أمامهم للتخلي عن التدخل وترك الأمور للحاسوب؟».

ويقول الباحثون إن برنامجاً مطوراً منظراً مثل «دكتور تشات بوت» Dr. Chatbot ليس جاهزاً تماماً لاستقبال المرضى الآن. لكن الذكاء الاصطناعي بدأ يُغير ممارسات بعض الأطباء ونوعية المرضى الذين يعالجونهم.

أولوية الرعاية... بيد الطبيب

يقول الدكتور روبرت كاليف، طبيب القلب بجامعة ديوك والمفوض السابق لإدارة الغذاء والدواء الأميركية، إن الذكاء الاصطناعي يتولى ما وصفه بـ«بعض الأعمال الروتينية» التي يقوم بها الأطباء حالياً، مثل تدوين ملاحظات حول زيارات المرضى. ولكن حتى مع وجود كم هائل من المعرفة الطبية في خوادمه، فقد لا يكون ذلك كافياً للسماح للروبوتات بتولي رعاية المرضى. وكان كاليف عمل لدى شركة «ألفابت» لمدة ست سنوات، ويقدم استشاراته لشركة ناشئة تستخدم الذكاء الاصطناعي لوصف الأدوية. ويضيف كاليف: «هناك كم هائل من المعلومات، إلا أن كيفية إجراء التفكير النقدي فيها أمر معقد».

رصد الحالة المرضية بدقة

من جهته، يقدم الدكتور لي شوام، طبيب الأعصاب والعميد المساعد للاستراتيجية الرقمية والتحول في كلية الطب بجامعة ييل، مثالاً على ذلك.

يقول المريض: «استيقظتُ أمس وأنا أشعر بدوار. كانت ذراعي مخدرة، وواجهتُ صعوبة في الكلام». ماذا يعني «الدوار» تحديداً؟ قد يعني أن المريض يشعر بدوار خفيف وعلى وشك الإغماء. أو قد يعني أن الغرفة تدور من حوله.

قد يكون المقصود بـ«الذراع الميتة» هو التنميل لا الضعف. قد يصف شخص مصاب بشلل جزئي في ذراعه شعوره بالتنميل. لكن المريض قد يشعر بوخزة إبرة إذا وخزه الطبيب شوام.

هل أصيب المريض بجلطة دماغية؟ هل هذه حالة طبية طارئة؟ يقول شوام إن لديه سنوات من التدريب تُساعده على تحديد المرضى، ومن لا داعي للقلق بشأنه، ومن يجب إدخاله إلى المستشفى... لقد تعلم قراءة العلامات الدقيقة واستخلاص المعلومات التي يصعب التعبير عنها بوضوح والتي نادراً ما تُدوّن.

ويضيف شوام أنه «يستطيع استخدام المنطق في ظل معلومات محدودة أو غير كاملة لاختيار التشخيصات الأكثر ترجيحاً لمزيد من التقييم، مع الموازنة بين الدقة والواقعية».

المصابون بأمراض خطيرة يحتاجون إلى تواصل إنساني

إن هذا العمل ليس من اختصاص برامج الدردشة الآلية. لذا؛ كما يقول شوام: «إنها بارعة في مطابقة الأنماط والتنبؤ... لكن لا يمكنها فعل ذلك إلا بناءً على البيانات المُعطاة لها عن المريض. ليس لديها أي وسيلة لاستخلاص تلك المعلومات بنفسها». ويضيف أن المصابين بأمراض خطيرة يحتاجون إلى تواصل إنساني. ويتابع: «في النهاية، فإنك تريد أن تنظر في عيني المريض»، وأن تشرح له ما إذا كان أمامه عشر سنوات ليعيشها أم ستة أشهر فقط.

الأدوات الذكية تخفف عمل الأطباء الاختصاصيين

لكن شوام لا يستبعد قدرات برامج الدردشة الآلية، التي يُقرّ بأنها قادرة على توسيع نطاق وصول الأطباء وتغيير بنية نظامنا الصحي. ويقول إن الذكاء الاصطناعي يتفوق بالفعل على الأطباء في بعض الحالات، مثل قراءة تخطيط كهربائية القلب. فهو قادر على تشخيص أمراض القلب من خلال رصد أنماط لا يستطيع أطباء القلب رؤيتها، والتي تتطلب عادةً إجراء تخطيط صدى القلب المكلف. وهذا يعني أن أطباء الأسرة يمكنهم الآن القيام ببعض مهام أطباء القلب.

كما يُسهم الذكاء الاصطناعي في تخفيف عبء العمل على بعض الاختصاصيين الطبيين، بحيث لا يضطر المرضى الذين يحتاجون إلى خبرتهم إلى الانتظار أسابيع أو شهوراً للحصول على موعد.

برامج لرصد أعراض الارتجاع المريئي

هذا ما يحدث بالفعل في عيادة الدكتور جون إريك باندولفينو، اختصاصي الارتجاع المرييي المعدي (GERD) في كلية فاينبرغ للطب بجامعة نورث وسترن.

كان معظم المرضى الذين يعانون أعراض ارتجاع المريء ينتظرون أسابيع للحصول على موعد معه. وأوضح أن «نسبة كبيرة من الحالات» كانت أقل خطورة ولا تتطلب رعايته.

*رصد الحالات المرضية. ابتكر باندولفينو حلاً يعتمد على الذكاء الاصطناعي أطلق عليه اسم GERDBot. يقوم النظام بفرز المرضى، وتوجيه من لا يحتاجون فعلاً إلى زيارة الطبيب إلى مقدمي رعاية صحية آخرين. والهدف هو تسريع علاج من يعانون أعراضاً أكثر خطورة.

يبدأ المرضى بالإجابة عن أسئلة النظام الآلي. ومن تظهر عليهم أعراض تشير إلى مشكلة خطيرة، يخضعون للفحص فوراً. أما الباقون، فيتلقون اتصالاً خلال أسبوع من ممرضة ممارسة أو مساعد طبيب، يُطمئنهم ويصف لهم الأدوية اللازمة، إن لزم الأمر.

ويستقبل باندولفينو، الذي رخص نموذج ذكاء اصطناعي آخر من ابتكاره لشركة الأجهزة الطبية «ميدترونيك»، الآن عدداً أقل من المرضى، لكنهم هم من يحتاجون إلى خبرته. ويقول: «معظم الناس يُقدّرون حقيقة أن علاجهم قد ابتدأ بالفعل، وحصولهم على المعلومات فوراً، وإذا لم يستجب علاجهم أو ظهرت عليهم علامات تحذيرية، فانهم يُحالون إلى الطبيب».

ويُقرّ بأن قلة قليلة تشعر بأنها تُحال إلى رعاية أقل جودة. لكن الطريقة القديمة - التي كانت تتطلب انتظاراً يصل إلى ستة أشهر للحصول على موعد - كانت أسوأ بكثير لمن يرغبون في المساعدة والطمأنينة.

* رصد الأعراض الحادة. وكانت الخطوة التالية تخفيف العبء عن المرضى الذين يعانون أعراض ارتجاع المريء الحادة. وقد طوّر باندولفينو خوارزمية ذكاء اصطناعي أطلق عليها اسم «إيزو-إنستين» Eso-Instein (Eso اختصاراً لكلمة «مريء»)، التي ستساعد اختصاصي الجهاز الهضمي الأقل تخصصاً على تحديد التشخيص الأرجح بناءً على أعراض المريض، ونتائج التنظير الداخلي، والفحوص الفيزيولوجية. ثم تُخبر الخوارزمية الطبيب بكيفية علاج المريض وتوقعات سير المرض.

ويقول باندولفينو: «في نهاية المطاف، عندما تتفوق الخوارزمية على الإنسان، سأضطر إلى البحث عن عمل آخر». ويضيف: «سيجعل الذكاء الاصطناعي أمثالي أقل أهمية تدريجياً».

كما أن خوارزمية الذكاء الاصطناعي التي ابتكرها باندولفينو قد تُتيح للاختصاصيين إحالة الكثير من مرضاهم إلى أطباء الرعاية الأولية، يُؤمل أيضاً أن تُسهم هذه الاستراتيجية نفسها في زيادة توافر أطباء الرعاية الأولية من خلال إسناد بعض مهامهم إلى ممرضين متخصصين. إذ إن هناك نقصاً حاداً في أعداد أطباء الرعاية الأولية، لا في المناطق الريفية فحسب، بل حتى في المدن الكبرى التي تضم كثيراً من المستشفيات وكليات الطب الكبيرة.

ارتقاء دور الممرضين... بفضل الذكاء الاصطناعي

الذكاء الاصطناعي يمكنه أن يساعد المرضى، كما قال الدكتور آدم رودمان، طبيب باطني في مركز بيث إسرائيل ديكونيس الطبي، بفرز المرضى وتمكين الممرضين الممارسين من القيام بجزء أكبر من عمل طبيب الرعاية الأولية؛ ما يتيح للطبيب معاينة المزيد من المرضى ذوي الاحتياجات المعقدة. وعندما يتعلق الأمر بالاختيار بين طبيب لا يستقبل مرضى جدداً أو طبيب يحيل المرضى إلى ممرض ممارس أو مساعد طبيب، فمن المرجح أن يتقبل المرضى هؤلاء المتخصصين الطبيين الآخرين.

مع ذلك، يُقرّ رودمان وباحثون آخرون بوجود مخاطر تتمثل في إمكانية أن تُعيد برامج الدردشة الآلية إنتاج التحيزات الموجودة بالفعل في المؤسسات الطبية. فعلى سبيل المثال، وجدت إحدى الدراسات أنها قد تُولي اهتماماً أقل لامرأة أو لشخص يرتكب أخطاءً إملائية أو نحوية.

مخاوف الخبراء من قصور النظام الطبي

تدفع هذه المخاوف بعض الخبراء إلى التحذير من عدّ الذكاء الاصطناعي حلاً سحرياً للنظام الطبي. يقول الدكتور ليو أنتوني سيلي، مدير الأبحاث السريرية في مختبر علم وظائف الأعضاء الحاسوبي بمعهد ماساتشوستس للتكنولوجيا: «إن القلق الحقيقي ليس في الذكاء الاصطناعي بحد ذاته، بل في استخدامه لتحسين نظام معيب بشدة بدلاً من إعادة تصوره». ويضيف سيلي: «قد لا يُدرك مرضى اليوم مدى قصور النظام الحالي في تلبية احتياجاتهم».

وتشاركه زميلته، مرضية قاسمي من مجموعة التعلم الآلي الصحي في معهد ماساتشوستس للتكنولوجيا، في مخاوف مماثلة؛ إذ قالت إن الذكاء الاصطناعي يمتلك «إمكانات هائلة»، لكن يبدو أنه يُستخدم حالياً في الغالب لزيادة أرباح الأنظمة الطبية من خلال «رفع ثمن الفواتير، واستبدال كوادر الرعاية الصحية الأولية للمرضى المحتاجين، أو الترويج للأدوية:».

وقال رودمان، إن على الأنظمة الطبية ومرضاها أن يكونوا على دراية بهذه المشكلات. وأضاف: «لكن هذا ليس سبباً للتخلي عن هذه التقنية». وهو يأمل أن يتمكن الباحثون، بفضل الذكاء الاصطناعي، من توثيق التحيزات والحد منها. أما مع البشر، الذين لديهم التحيزات نفسها، «فمن الصعب جداً التخفيف منها»، كما قال رودمان.

وأضاف رودمان أن الذكاء الاصطناعي، على الأقل في بعض المهام، سيكون أفضل من الأطباء. سيكون أكثر دقة في الالتزام بإرشادات الفحص وتقديم المشورة للمرضى بشأن عادات نومهم وغذائهم، على سبيل المثال.

آخر ما نريده: «طبيب غبي يعتمد على الذكاء الاصطناعي بالكامل»

ويعلق يقول الدكتور جيفري أ. ليندر، اختصاصي الطب الباطني في جامعة نورث وسترن. على ذلك بأن «هذه هي الجوانب الروتينية في مهنة الطب».

ويضيف: «هناك الكثير من المهام التي نقوم بها في الرعاية الصحية الأولية والتي تبدو وكأنها مجرد إجراءات شكلية». ولكنه أعرب عن قلقه من أن يعتمد بعض الأطباء بشكل مفرط على الذكاء الاصطناعي، ويقول: «آخر ما نريده هو طبيب غبي يعتمد على الذكاء الاصطناعي بشكل كامل»، حيث «أُعطّل عقلي وأترك الذكاء الاصطناعي يملي عليّ ما يجب فعله طوال الوقت».

لكن المشكلة تكمن في أنه بينما قد لا يكون الذكاء الاصطناعي مثالياً، فإن النظام الطبي الحالي ليس كذلك أيضاً. ويتضح جلياً أن دور الطبيب سيشهد تحولاً جذرياً.

الدور المهم للأطباء

لكن لا يزال للأطباء أدوار مهمة يؤدونها. ويقول ليندر: «الطب الباطني تخصصٌ يعتمد على التعامل المباشر مع المرضى. إنك تتعرف على مرضاك بمرور الوقت، وتعرف قيمهم، وتعرف عائلاتهم».

ويوافق الدكتور جوشوا شتاينبرغ، طبيب الرعاية الأولية في جامعة ولاية نيويورك الطبية في بينغهامتون، نيويورك، على ذلك. ويقول: «حتى لو قرأ الذكاء الاصطناعي جميع المراجع الطبية، سأظل أنا الخبير في حالة مرضاي». ويضيف: «أعتقد أن دورنا كأطباء قد يبدو مختلفاً بعض الشيء، لكنني سأظل جالساً على كرسي متحرك صغير، أتحدث مع المريض».

* خدمة «نيويورك تايمز»


عندما تعمل الجينات معاً: تفسير جديد لأمراض القلب الوراثية

عندما تعمل الجينات معاً: تفسير جديد لأمراض القلب الوراثية
TT

عندما تعمل الجينات معاً: تفسير جديد لأمراض القلب الوراثية

عندما تعمل الجينات معاً: تفسير جديد لأمراض القلب الوراثية

كشفت دراسة حديثة أجراها باحثون في جامعة ستانفورد، أن التفاعلات بين جينات عدة، وليس الطفرات الجينية الفردية فقط، تلعب دوراً حاسماً في تطور بعض أمراض القلب الوراثية وتحديد شدتها. وتشير هذه النتائج إلى أن الفهم التقليدي لأمراض القلب القائم على البحث عن خلل في جين واحد، قد يكون مبسطاً أكثر مما ينبغي.

تفاعلات جينية معقَّدة

وقاد هذا البحث البروفسور إيوان آشلي، أستاذ علم الوراثة وعلوم البيانات الطبية الحيوية في كلية الطب بجامعة ستانفورد؛ حيث يركز مختبره على دراسة الكيفية التي تؤثر بها التفاعلات الجينية المعقدة في صحة الإنسان. ونُشرت الدراسة على موقع «Stanford Medicine» في 23 يناير (كانون الثاني) 2026، وقد تفتح آفاقاً جديدة في تشخيص أمراض القلب الوراثية وعلاجها.

ولطالما وُصفت أمراض القلب بأنها حالات تُورَّث داخل العائلات نتيجة خلل جيني ينتقل من الآباء إلى الأبناء. ولسنوات طويلة ركّز العلماء على الطفرات الجينية الفردية بوصفها السبب الرئيسي وراء هذه الأمراض. إلا أن هذا النهج لم يفسر سبب اختلاف شدة المرض بين أشخاص يحملون الطفرة نفسها، أو لماذا يُصاب بعضهم بالمرض بينما لا يُصاب آخرون.

ما وراء الجين الواحد

تلعب الجينات دوراً أساسياً في تحديد صفات جسدية بسيطة، مثل لون العينين أو شكل الوجه، وغالباً ما ترتبط هذه الصفات بجين واحد. ولكن الأمراض المعقدة -وعلى رأسها أمراض القلب- لا تخضع لهذه القاعدة البسيطة. فجميع البشر تقريباً يحملون تغيرات صغيرة في الحمض النووي (DNA) يُطلق على بعضها أحياناً «أخطاء مطبعية» جينية. ومعظم هذه التغيرات غير ضار؛ لكن بعضها قد يسهم في حدوث المرض.

هنا يظهر مفهوم وراثي يُعرف باسم التآثر الجيني (Epistasis) وهو يحدث عندما يتفاعل جينان أو أكثر معاً، لتغيير النتيجة النهائية لصفة جسدية أو مرضية. في هذه الحالة يعتمد تأثير جين واحد على وجود أو غياب جين آخر، ما يؤدي إلى نتائج لا يمكن التنبؤ بها عند دراسة كل جين على حدة.

ويؤكد آشلي أن الجينات لا تعمل بشكل منفصل؛ بل ضمن شبكات معقدة. وفهم هذه الشبكات يساعد العلماء على تفسير سبب ظهور المرض لدى بعض الأشخاص دون غيرهم.

التركيز على تضخم عضلة القلب

وركز فريق البحث على حالة تُعرف باسم «تضخم عضلة القلب»، وهي اضطراب يصبح فيه جدار القلب سميكاً بشكل غير طبيعي، ما يحد من قدرته على ضخ الدم بكفاءة. وقد تؤدي هذه الحالة إلى عجز القلب أو اضطرابات خطيرة في نبضات القلب، وقد تكون قاتلة في بعض الأحيان.

ولسنوات، اعتُقد أن تضخم عضلة القلب ناتج أساساً عن طفرات فردية في جينات مسؤولة عن بنية عضلة القلب. ولكن فريق آشلي افترض أن التفاعلات بين عدة جينات قد تلعب دوراً أكبر مما كان يُعتقد.

تحليل كميات هائلة من البيانات

ولاختبار هذه الفرضية، طوَّر الباحثون أدوات حاسوبية متقدمة، قادرة على كشف التآثرات الجينية الخفية داخل مجموعات ضخمة من البيانات الوراثية. واعتمدت الدراسة على ما يقرب من 10 سنوات من جمع البيانات، شملت تحليلات جينية لأكثر من 300 قلب بشري، إضافة إلى نحو 30 ألف صورة قلب، مأخوذة من قاعدة بنك البيانات الحيوية في المملكة المتحدة (UK Biobank) إحدى أكبر قواعد البيانات الطبية الحيوية في العالم.

وباستخدام تقنيات الذكاء الاصطناعي وتعلُّم الآلة، فحص الفريق نحو 15 مليون تغير جيني مرتبط ببنية القلب، ثم قلَّص هذا العدد إلى نحو 1400 طفرة يُحتمل أن تتفاعل بعضها مع بعض. بعد ذلك صُمم نموذج حاسوبي لترتيب هذه التفاعلات، وفقاً لتأثيرها المتوقع، في شكل وحجم ووزن عضلة القلب.

ثلاثة جينات محورية

وقد أسفرت التحليلات عن بروز 3 جينات رئيسية: TTN وIGF1R وCCDC141. ويُعد جين TTN من الجينات المعروفة المرتبطة بأمراض عضلة القلب، بينما يلعب جين IGF1R دوراً مهماً في نمو القلب وتنظيم عمليات الأيض. أما جين CCDC141 فلا يزال غير مدروس على نطاق واسع، ولم يكن مرتبطاً سابقاً بشكل مباشر بأمراض القلب.

وأظهرت النتائج أن الطفرات في واحد من هذه الجينات بمفرده يكون تأثيرها محدوداً نسبياً؛ لكن عند اجتماع طفرات في جينين معاً يصبح التأثير أكثر وضوحاً وخطورة، ما يؤكد الدور المحوري للتآثر الجيني في تطور المرض.

تجارب مختبرية تؤكد النتائج

وللتحقق من هذه النتائج أجرى الباحثون تجارب على خلايا عضلة القلب البشرية المزروعة في المختبر. واستخدموا تقنيات تعتمد على الحمض النووي الريبي لتعطيل أزواج محددة من الجينات، ثم راقبوا استجابة الخلايا. وأظهرت النتائج أن تعطيل جينين متفاعلين معاً أدى إلى تقليل تضخم الخلايا القلبية بشكل ملحوظ، وهو أحد المؤشرات الرئيسية لمرض تضخم عضلة القلب.

أهمية النتائج وآفاق المستقبل

تحمل هذه النتائج أهمية كبيرة لمستقبل علاج أمراض القلب. فمعظم العلاجات الجينية الحالية تستهدف جيناً واحداً فقط؛ لكن إذا كان المرض ناتجاً عن تفاعل شبكة كاملة من الجينات، فإن هذا النهج قد لا يكون كافياً. وأوضحت الباحثة تشيانرو وانغ، المؤلفة الرئيسية للدراسة من قسم طب القلب والأوعية الدموية بجامعة ستانفورد، أن فهم هذه التفاعلات قد يساعد في تطوير علاجات أكثر دقة وفعالية.

ورغم أن الدراسة ركَّزت على أمراض القلب، فإن نتائجها قد تمتد لتشمل أمراضاً معقدة أخرى، مثل السرطان والسكري واضطرابات الجهاز العصبي. ومع استمرار العلماء في فك رموز هذه الشبكات الجينية المعقدة، يبدو مستقبل الطب الدقيق أكثر قدرة على تقديم علاجات شاملة تستند إلى فهم أعمق لجينات الإنسان وتفاعلاتها.


بيانات رادار تكشف عن تجويف حمم بركانية تحت سطح كوكب الزهرة

تجويف كبير تحت سطح الزهرة ناتج عن تدفق حمم بركانية (رويترز)
تجويف كبير تحت سطح الزهرة ناتج عن تدفق حمم بركانية (رويترز)
TT

بيانات رادار تكشف عن تجويف حمم بركانية تحت سطح كوكب الزهرة

تجويف كبير تحت سطح الزهرة ناتج عن تدفق حمم بركانية (رويترز)
تجويف كبير تحت سطح الزهرة ناتج عن تدفق حمم بركانية (رويترز)

أشارت دراسة حديثة لبيانات رادار خاصة بكوكب الزهرة حصلت عليها مركبة الفضاء ماجلان التابعة لإدارة الطيران والفضاء (ناسا) في تسعينات القرن الماضي إلى وجود تجويف كبير تحت سطح الزهرة ناتج عن تدفق حمم بركانية. وهذه أول ظاهرة تحت السطح تُكتشف على الكوكب المجاور للأرض.

ووفقاً لـ«رويترز»، قال الباحثون إن بيانات الرادار تتوافق مع سمة جيولوجية تسمى أنبوب الحمم البركانية الموجود في بعض المواقع البركانية ‌على الأرض. وتوجد أنابيب ‌الحمم البركانية أيضاً على ‌القمر ⁠ويُعتقد أنها موجودة ‌على المريخ.

وتغطي سطح الزهرة سحب سامة كثيفة تجعل من الصعب سبر أغواره، لكن الرادار يمكنه اختراق السحب.

وافترض العلماء وجود أنابيب الحمم البركانية على كوكب الزهرة بالنظر إلى تاريخه البركاني.

وقال لورينتسو بروتسوني عالم الرادار والكواكب في جامعة ترينتو بإيطاليا والمعد الرئيسي للدراسة ⁠المنشورة اليوم في دورية «نيتشر كوميونيكيشنز» العلمية: «يمثل الانتقال من ‌النظرية إلى الملاحظة المباشرة خطوة كبيرة إلى الأمام، ويفتح الباب أمام اتجاهات جديدة للبحث، ويوفر معلومات مهمة للمهام المستقبلية التي تهدف إلى استكشاف الكوكب».

وحلل الباحثون البيانات التي تسنى الحصول عليها بواسطة رادار الفتحة التركيبية، وهو جهاز استشعار عن بعد تابع للمركبة ماجلان، بين عامي 1990 و1992 في مواقع تحمل علامات انهيارات سطحية موضعية تشير إلى وجود ⁠أنابيب حمم بركانية تحتها. واستخدموا منهج تحليل بيانات مطورة حديثاً تهدف إلى تحديد التجاويف تحت السطح مثل أنابيب الحمم البركانية.

ولم يحظ كوكب الزهرة باهتمام علمي كبير مقارنة بالمريخ، لكنّ هناك بعثتين مهمتين على وشك الانطلاق، وهما «إنفجن» التابعة لوكالة الفضاء الأوروبية و«فيريتا» التابعة لناسا.

وستحمل كلتا المركبتين الفضائيتين أنظمة رادار متطورة قادرة على التقاط صور عالية الدقة. وستحمل «إنفجن» راداراً مدارياً قادراً على اختراق السطح ‌وعلى استكشاف باطن كوكب الزهرة إلى عمق عدة مئات من الأمتار.