«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

هيدروجيل حيوي يسهم في تشكيل خلايا لأنسجة قادرة على البقاء

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
TT

«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد

شهدت الفترة ما بين 1984 وحتى 1988 ميلادي ولادة التصنيع الإضافي، أو ما يعرف باسم الطباعة ثلاثية الأبعاد على يد المهندس الأميركي تشاك هال. ومنذ ذلك الوقت تعددت الاستخدامات الحديثة لهذه التقنية لتشمل تقريبا كافة مناحي الحياة بما فيها المجال الصحي والطبي.
وتكمن ميزة استخدام تقنيات الطباعة ثلاثية الأبعاد (التجسيمية) بشكل عام في قابلية أتمتتها ومساهمتها في زيادة تشكيل الأعضاء وإنتاجها على نطاق أكبر فضلاً عن الدقة الكبيرة التي تتمتع بها. ومن أبرز تطبيقات الطباعة ثلاثية الأبعاد في المجال الطبي، إنتاج أطراف وأجزاء صناعية مخصصة لتناسب مرتديها، وكذلك الضمادات الذكية، وتركيبات الفم والأسنان، والأدوات الطبية.

- طباعة حيوية
كما حقق العلماء وشركات التقنية الحيوية تقدما كبيرا خلال السنوات الماضية في استخدام أدوات الطباعة الحيوية لإنشاء نسيج حي صناعي في المختبر عبر وضع طبقات الخلايا الحية، المسماة بـ«الحبر الحيوي»، فوق بعضها البعض، وطباعة الأعضاء والأنسجة للمساعدة على دراستها في المختبر وفي الأبحاث الطبية.
ويمكن تعريف الطباعة الحيوية على أنها طباعة ثلاثية الأبعاد تشتمل على خلايا حية ومواد حيوية في صورة أحبار لتصنيع الخلايا والأنسجة والهياكل الحيوية بمساعدة الكومبيوتر. وبمعنى آخر أنها منصة تصنيع تنتج هياكل تشبه الأنسجة الحية ثلاثية الأبعاد بما فيها من أوعية دموية دقيقة.
هذه التقنية تتمتع بإمكانية إحداث ثورة كبيرة في هندسة الأنسجة حيث يتم التركيز على تطوير بدائل بيولوجية قادرة على أن تحل محل الأنسجة التالفة أو إصلاحها في جسم الإنسان، مما يمهد لطباعة أعضاء بشرية باستخدام الطباعة ثلاثية الأبعاد يمكن زرعها في المستقبل في الجسم البشري. أيضاً تدعم هذه التقنية توجهات الطب الشخصي خاصةً فيما يتعلق بتشخيص الأمراض وتطوير الأدوية لها، وذلك بتجربة اختبار تأثيرها على الأعضاء المطبوعة ودراسة أعراضها، والاستغناء عن تجربتها على الحيوانات، قبل طرحها واستخدامها.

أسطوانات مطبوعة حيوياً يصل ارتفاعها إلى أربعة سنتيمترات تحتفظ بقوامها جيداً

- أسلوب جديد
الآن أصبح باستطاعة عملية جديدة مؤتمتة طورها باحثو جامعة الملك عبد الله للعلوم والتقنية (كاوست)؛ من طباعة «سقالة هيدروجيل» قائمة على «الببتيد»، وفي داخلها خلايا موزعة بشكل منتظم. وتحتفظ السقالات بشكلها بمهارة، كما تسهل عملية نمو الخلايا الذي يستمر لأسابيع.
ويذكر أن الطباعة الثلاثية الأبعاد ساهمت في عملية تصنيع الأنسجة الحيوية، وقد نجحت في طباعة «أحبار هيدروجيل الحيوية»، بالإضافة إلى إمكاناتها الكبيرة في استخدام الخلايا الجذعية في الطباعة الحيوية، بجعلها قادرة على إنتاج أنسجة وأعضاء جديدة للإنسان.
و«الهيدروجيل» عبارة عن مادة آمنة ثلاثية الأبعاد مترابطة ذات مظهر صلب مكونة من سلاسل متشابكة من البوليمرات لديها القدرة على امتصاص كمية كبيرة من الماء والاحتفاظ بها، ويمكن للخلايا أن تنمو بداخلها. ويمكن الحصول على هذه البوليمرات من الطبيعة أو عن طريق تصنيعها.
اختبر العلماء «أحباراً حيوية» منها الطبيعي والصناعي؛ لطباعة السقالات التي تثبت الخلايا في مكانها حيث تنمو وتشكل نسيجا له قوام خاص. ولكن هناك تحديات تمثل حجر عثرة أمام بقاء الخلية وديمومتها. وذلك نظراً لأن الأحبار الحيوية الطبيعية، مثل: الجيلاتين والكولاجين تحتاج إلى المعالجة بالمواد الكيميائية أو الأشعة فوق البنفسجية للحفاظ على شكلها، مما يؤثر على حيوية الخلية. بالإضافة إلى أن الهلاميات المائية القائمة على البوليمرات الصناعية، والتي تم اختبارها حتى الآن، تتطلب استخدام مواد كيميائية قاسية وظروف تهدد بقاء الخلية.
لكن هذا العائق لم يثنِ فريق البروفسورة شارلوت هاوزر، رئيسة قسم الهندسة الحيوية بـ«كاوست» عن هدفه؛ حيث طور عملية طباعة حيوية باستخدام «الببتيدات فائقة القصر» كركيزة أساسية في عملية تحبير السقالات، وذلك بتصميم ثلاثة «ببتيدات» باستخدام تركيبات مختلفة من الأحماض الأمينية مثل: إيزولوسين، لايسين، فينيل ألانين، وسيكلوهكسيل ألانين.
و«الببتيد» هو سلسلة من الأحماض الأمينية مرتبطة مع بعضها البعض مكونة ما يسمى بـ«الببتيدات» إذا ما زاد عدد الأحماض الأمينية عن 100 حمض بالبروتينات.

- منتجات فعلية
وإذا تطرقنا إلى الحديث عن الطباعة الفعلية، فقد استخدم الفريق فوهة جديدة ثلاثية المدخل؛ حيث ينتقل ببتيد «الحبر الحيوي» إلى مدخل واحد، وينتقل محلول منظم إلى مدخل آخر، ويتم إضافة الخلايا من خلال مدخل ثالث. وبالتالي فإن آلية عمل الطباعة الحيوية المذكورة تسمح لببتيد الحبر بالاختلاط تدريجياً مع المحلول المنظم، ثم يتحد مع الخلايا عند مخرج الفوهة. وبمجرد إخراج الحبر، فإنه يتصلب على الفور، ويحتجز الخلايا الموجودة داخل هيكله.
يقول هيبي هاري سوسابتو، الباحث في مرحلة الدكتوراة بـ«كاوست»: «إن العثور على مادة حيوية صديقة للخلايا، وتعزز بقاءها على المدى الطويل، ويمكن طباعتها أيضاً هو أمر عسير». ويردف قائلاً: «لكن الأحبار الحيوية الخاصة بنا والمصنوعة من الهلاميات المائية لببتيد فائق القصر وذاتي التجمع تجعل منه أمراً يسيراً».
بالاستعانة بهذه التقنيات، تمكن الفريق من طباعة أسطوانات يصل ارتفاعها إلى أربعة سنتيمترات، وأنف يشبه أنف الإنسان، وجميعها تحتفظ بقوامها جيداً.

- نجاة دماغ الفأر
علاوةً على ذلك، تمكنت الخلايا الليفية البشرية، والخلايا الجذعية الوسيطة لنخاع العظم البشري، والخلايا العصبية لدماغ الفأر من النجاة وتكاثرت جيداً داخل مصفوفة «الهيدروجيل». وحفز العلماء الخلايا الجذعية الوسيطة للنخاع العظمي للتمايز داخل سقالة مطبوعة إلى نسيج مرن يشبه الغضروف خلال فترة 4 أسابيع.
وبعد التحقق من نجاة الخلية، يعمل الفريق في الوقت الراهن على تغيير كيمياء السطح لأحبارهم الحيوية بحيث تصبح مشابهة إلى حد كبير لبيئة الخلية في جسم الإنسان. وتعرب هاوزر عن طموحاتها في التطوير، فتقول: «إن خطوتنا التالية تكمن في الطباعة الحيوية لنماذج الأمراض ثلاثية الأبعاد وأعضاء مصغرة، وتشخيصها، ولاختبار الأدوية بإنتاجية عالية». وتضيف: «يمكن أن يسهم ذلك في تقليل وقت وتكلفة البحث عن أدوية شخصية وأكثر فاعلية».


مقالات ذات صلة

علماء ينتجون «نموذج جنين بشري» في المختبر

علوم النموذج تم تطويره باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء ينتجون «نموذج جنين بشري» في المختبر

أنتجت مجموعة من العلماء هيكلاً يشبه إلى حد كبير الجنين البشري، وذلك في المختبر، دون استخدام حيوانات منوية أو بويضات.

«الشرق الأوسط» (لندن)
علوم الهياكل الشبيهة بالأجنة البشرية تم إنشاؤها في المختبر باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء يطورون «نماذج أجنة بشرية» في المختبر

قال فريق من الباحثين في الولايات المتحدة والمملكة المتحدة إنهم ابتكروا أول هياكل صناعية في العالم شبيهة بالأجنة البشرية باستخدام الخلايا الجذعية.

«الشرق الأوسط» (لندن)
علوم علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

تمكنت مجموعة من العلماء من جمع وتحليل الحمض النووي البشري من الهواء في غرفة مزدحمة ومن آثار الأقدام على رمال الشواطئ ومياه المحيطات والأنهار.

«الشرق الأوسط» (نيويورك)
علوم صورة لنموذج يمثل إنسان «نياندرتال» معروضاً في «المتحف الوطني لعصور ما قبل التاريخ» بفرنسا (أ.ف.ب)

دراسة: شكل أنف البشر حالياً تأثر بجينات إنسان «نياندرتال»

أظهرت دراسة جديدة أن شكل أنف الإنسان الحديث قد يكون تأثر جزئياً بالجينات الموروثة من إنسان «نياندرتال».

«الشرق الأوسط» (لندن)
علوم دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

توصلت دراسة جديدة إلى نظرية جديدة بشأن كيفية نشأة القارات على كوكب الأرض مشيرة إلى أن نظرية «تبلور العقيق المعدني» الشهيرة تعتبر تفسيراً بعيد الاحتمال للغاية.

«الشرق الأوسط» (لندن)

ألياف طبيعية تعزز كفاءة تقنيات تحلية المياه بتكلفة منخفضة

الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
TT

ألياف طبيعية تعزز كفاءة تقنيات تحلية المياه بتكلفة منخفضة

الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)

تُشكل ندرة المياه العذبة تحدياً عالمياً زائداً، خصوصاً في المناطق الجافة التي تشهد استنزافاً سريعاً لمواردها المحدودة. كما يزيد النمو السكاني والتطور الاقتصادي من حدة المشكلة، حيث يرفعان الطلب على المياه لأغراض الشرب والزراعة والصناعة؛ مما يهدد الصحة العامة والأمن الغذائي.

وتعتمد الطرق التقليدية لتحلية المياه على الطاقة بشكل مكثف ولها آثار بيئية سلبية، بينما تعد تقنيات تحلية المياه بالطاقة الشمسية حلاً واعداً لمعالجة ندرة المياه والعمل المناخي، حيث تستفيد من الطاقة الشمسية المتجددة. وعلى الرغم من أن أنظمة «المقطرات» الشمسية لتحلية المياه تعد طريقة مستدامة، فإنها تواجه تحديات مثل الكفاءة المنخفضة التي تتراوح بين 30 و40 في المائة، ومعدلات إنتاج منخفضة للمياه العذبة، بالإضافة إلى التلوث البيئي الناجم عن استخدام مواد تقليدية، مثل المواد ذات التغير الطوري.

ألياف طبيعية

واستعرضت دراسة مرجعية أجراها باحثون مصريون، إمكانية استخدام الألياف الطبيعية بوصفها وسيلة مستدامة لتعزيز أداء الأنظمة الشمسية لتحلية المياه. وتتميز الألياف الطبيعية، المستخلصة من مصادر نباتية وحيوانية متاحة في المناطق النائية، بكونها بديلاً منخفض التكلفة، وقابلة للتحلل الحيوي، ومتعددة الاستخدامات.

ووفق النتائج المنشورة بعدد نوفمبر (تشرين الثاني) بدورية (Solar Energy)، يمكن للألياف الطبيعية مثل القطن، وقش الأرز، وألياف شجرة الموز، ونبات السيزال، وقش الخيزران، تحسين الأداء من خلال توفير الهيكل المسامي من أجل ترشيح المياه، وإزالة الشوائب، وتعزيز نقل الحرارة.

يقول الدكتور محمد عجيزة، الباحث الرئيسي للدراسة بقسم الهندسة الميكانيكية في جامعة كفر الشيخ، إن الألياف الطبيعية توفر حلاً مستداماً لتحسين كفاءة تحلية المياه بالطاقة الشمسية مع تقليل الأثر البيئي، لأنها تتميز بالتحلل البيولوجي، ما يجعلها خياراً جذاباً لتعزيز كفاءة الأنظمة الشمسية في المناطق التي تفتقر إلى الموارد.

وأضاف لـ«الشرق الأوسط» أن الألياف الطبيعية توفر امتصاصاً عالياً للإشعاع الشمسي؛ مما يُحسّن الاحتفاظ بالحرارة ويزيد معدلات التبخر، كما تعزز الكفاءة الحرارية والعزل وتقلل الفاقد الحراري؛ مما يزيد من كفاءة التكثيف بفضل مساحتها السطحية الكبيرة، فيما تُسهّل خصائصها نقل المقطر الشمسي، وتوزيعه في المناطق النائية، حيث تقلل من الوزن الإجمالي له.

تقنيات تحلية المياه بالطاقة الشمسية تعد حلا ًواعداً لمعالجة ندرة المياه والعمل المناخي (جامعة واترلو)

تقييم الأداء

أثبتت الدراسة أن الألياف الطبيعية تتمتع بقدرة استثنائية على امتصاص المياه تصل إلى 234 في المائة، بالإضافة إلى خصائصها الحرارية المميزة؛ مما يتيح استخدامها بوصفها مواد عازلة أو ممتصة أو موصلة للحرارة في الأنظمة الشمسية. ويسهم ذلك في تحسين عمليات التبخير والتكثيف. وتعمل هذه الألياف على تعزيز نقل الحرارة وتقليل فقد الطاقة؛ مما يؤدي إلى تحسين الكفاءة بنسبة 15 في المائة. كما وجد الباحثون أن هذه الألياف أثبتت قدرتها على زيادة إنتاجية المياه العذبة بشكل ملحوظ، حيث حققت زيادة تصل إلى 123.5 في المائة مع قشور الجوز الأسود، و126.67 في المائة مع مزيج من ألياف النباتات التي تنمو في البرك والمستنقعات وألياف السيزال.

وبالمقارنة مع المقطرات التقليدية، حققت بعض الألياف زيادة ملحوظة في إنتاج المياه العذبة، مثل نشارة الخشب وقش الأرز (62 في المائة)، واللوف الأسود (77.62 في المائة)، وألياف السيزال (102.7 في المائة)، والقماش القطني (53.12 في المائة)، وألياف النخيل (44.50 في المائة)، وألياف الكتان (39.6 في المائة).

وحددت الدراسة أبرز مميزات التوسع في استخدام الألياف الطبيعية في تقنيات تحلية المياه بالطاقة الشمسية، مثل وفرة الموارد الشمسية والمساحات الواسعة لتركيب الأنظمة، بالإضافة لكون الألياف خياراً مستداماً. كما تدعم زيادة استنزاف الموارد المائية العالمية، ونمو السكان، وزيادة الوعي بتغير المناخ الحاجة الملحة لهذه التكنولوجيا.

في المقابل، أشار الباحثون إلى تحديات تواجه هذه التقنيات، منها قلة الاستثمارات في الطاقة المتجددة، والوعي المحدود بفوائد أنظمة التحلية الشمسية، بالإضافة إلى قلة الانتشار والعوائق التجارية مقارنة بالتقنيات التقليدية، والاختلافات في سياسات الطاقة بين الدول، ما يؤثر على إمكانية توسيع نطاق استخدامها.

وأوصى الباحثون بإجراء مزيد من الأبحاث لتحسين تركيبات الألياف الطبيعية، واستكشاف بدائل قابلة للتحلل الحيوي لتقليل الأثر البيئي. وأكدوا أهمية إجراء تقييمات شاملة لتقنيات التحلية الشمسية لتحقيق أقصى تأثير ممكن وتلبية الاحتياجات الزائدة للمياه بشكل مستدام؛ مما يسهم في دعم الأمن المائي، وتعزيز القدرة على التكيف مع التغيرات المناخية.