«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

هيدروجيل حيوي يسهم في تشكيل خلايا لأنسجة قادرة على البقاء

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
TT

«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد

شهدت الفترة ما بين 1984 وحتى 1988 ميلادي ولادة التصنيع الإضافي، أو ما يعرف باسم الطباعة ثلاثية الأبعاد على يد المهندس الأميركي تشاك هال. ومنذ ذلك الوقت تعددت الاستخدامات الحديثة لهذه التقنية لتشمل تقريبا كافة مناحي الحياة بما فيها المجال الصحي والطبي.
وتكمن ميزة استخدام تقنيات الطباعة ثلاثية الأبعاد (التجسيمية) بشكل عام في قابلية أتمتتها ومساهمتها في زيادة تشكيل الأعضاء وإنتاجها على نطاق أكبر فضلاً عن الدقة الكبيرة التي تتمتع بها. ومن أبرز تطبيقات الطباعة ثلاثية الأبعاد في المجال الطبي، إنتاج أطراف وأجزاء صناعية مخصصة لتناسب مرتديها، وكذلك الضمادات الذكية، وتركيبات الفم والأسنان، والأدوات الطبية.

- طباعة حيوية
كما حقق العلماء وشركات التقنية الحيوية تقدما كبيرا خلال السنوات الماضية في استخدام أدوات الطباعة الحيوية لإنشاء نسيج حي صناعي في المختبر عبر وضع طبقات الخلايا الحية، المسماة بـ«الحبر الحيوي»، فوق بعضها البعض، وطباعة الأعضاء والأنسجة للمساعدة على دراستها في المختبر وفي الأبحاث الطبية.
ويمكن تعريف الطباعة الحيوية على أنها طباعة ثلاثية الأبعاد تشتمل على خلايا حية ومواد حيوية في صورة أحبار لتصنيع الخلايا والأنسجة والهياكل الحيوية بمساعدة الكومبيوتر. وبمعنى آخر أنها منصة تصنيع تنتج هياكل تشبه الأنسجة الحية ثلاثية الأبعاد بما فيها من أوعية دموية دقيقة.
هذه التقنية تتمتع بإمكانية إحداث ثورة كبيرة في هندسة الأنسجة حيث يتم التركيز على تطوير بدائل بيولوجية قادرة على أن تحل محل الأنسجة التالفة أو إصلاحها في جسم الإنسان، مما يمهد لطباعة أعضاء بشرية باستخدام الطباعة ثلاثية الأبعاد يمكن زرعها في المستقبل في الجسم البشري. أيضاً تدعم هذه التقنية توجهات الطب الشخصي خاصةً فيما يتعلق بتشخيص الأمراض وتطوير الأدوية لها، وذلك بتجربة اختبار تأثيرها على الأعضاء المطبوعة ودراسة أعراضها، والاستغناء عن تجربتها على الحيوانات، قبل طرحها واستخدامها.

أسطوانات مطبوعة حيوياً يصل ارتفاعها إلى أربعة سنتيمترات تحتفظ بقوامها جيداً

- أسلوب جديد
الآن أصبح باستطاعة عملية جديدة مؤتمتة طورها باحثو جامعة الملك عبد الله للعلوم والتقنية (كاوست)؛ من طباعة «سقالة هيدروجيل» قائمة على «الببتيد»، وفي داخلها خلايا موزعة بشكل منتظم. وتحتفظ السقالات بشكلها بمهارة، كما تسهل عملية نمو الخلايا الذي يستمر لأسابيع.
ويذكر أن الطباعة الثلاثية الأبعاد ساهمت في عملية تصنيع الأنسجة الحيوية، وقد نجحت في طباعة «أحبار هيدروجيل الحيوية»، بالإضافة إلى إمكاناتها الكبيرة في استخدام الخلايا الجذعية في الطباعة الحيوية، بجعلها قادرة على إنتاج أنسجة وأعضاء جديدة للإنسان.
و«الهيدروجيل» عبارة عن مادة آمنة ثلاثية الأبعاد مترابطة ذات مظهر صلب مكونة من سلاسل متشابكة من البوليمرات لديها القدرة على امتصاص كمية كبيرة من الماء والاحتفاظ بها، ويمكن للخلايا أن تنمو بداخلها. ويمكن الحصول على هذه البوليمرات من الطبيعة أو عن طريق تصنيعها.
اختبر العلماء «أحباراً حيوية» منها الطبيعي والصناعي؛ لطباعة السقالات التي تثبت الخلايا في مكانها حيث تنمو وتشكل نسيجا له قوام خاص. ولكن هناك تحديات تمثل حجر عثرة أمام بقاء الخلية وديمومتها. وذلك نظراً لأن الأحبار الحيوية الطبيعية، مثل: الجيلاتين والكولاجين تحتاج إلى المعالجة بالمواد الكيميائية أو الأشعة فوق البنفسجية للحفاظ على شكلها، مما يؤثر على حيوية الخلية. بالإضافة إلى أن الهلاميات المائية القائمة على البوليمرات الصناعية، والتي تم اختبارها حتى الآن، تتطلب استخدام مواد كيميائية قاسية وظروف تهدد بقاء الخلية.
لكن هذا العائق لم يثنِ فريق البروفسورة شارلوت هاوزر، رئيسة قسم الهندسة الحيوية بـ«كاوست» عن هدفه؛ حيث طور عملية طباعة حيوية باستخدام «الببتيدات فائقة القصر» كركيزة أساسية في عملية تحبير السقالات، وذلك بتصميم ثلاثة «ببتيدات» باستخدام تركيبات مختلفة من الأحماض الأمينية مثل: إيزولوسين، لايسين، فينيل ألانين، وسيكلوهكسيل ألانين.
و«الببتيد» هو سلسلة من الأحماض الأمينية مرتبطة مع بعضها البعض مكونة ما يسمى بـ«الببتيدات» إذا ما زاد عدد الأحماض الأمينية عن 100 حمض بالبروتينات.

- منتجات فعلية
وإذا تطرقنا إلى الحديث عن الطباعة الفعلية، فقد استخدم الفريق فوهة جديدة ثلاثية المدخل؛ حيث ينتقل ببتيد «الحبر الحيوي» إلى مدخل واحد، وينتقل محلول منظم إلى مدخل آخر، ويتم إضافة الخلايا من خلال مدخل ثالث. وبالتالي فإن آلية عمل الطباعة الحيوية المذكورة تسمح لببتيد الحبر بالاختلاط تدريجياً مع المحلول المنظم، ثم يتحد مع الخلايا عند مخرج الفوهة. وبمجرد إخراج الحبر، فإنه يتصلب على الفور، ويحتجز الخلايا الموجودة داخل هيكله.
يقول هيبي هاري سوسابتو، الباحث في مرحلة الدكتوراة بـ«كاوست»: «إن العثور على مادة حيوية صديقة للخلايا، وتعزز بقاءها على المدى الطويل، ويمكن طباعتها أيضاً هو أمر عسير». ويردف قائلاً: «لكن الأحبار الحيوية الخاصة بنا والمصنوعة من الهلاميات المائية لببتيد فائق القصر وذاتي التجمع تجعل منه أمراً يسيراً».
بالاستعانة بهذه التقنيات، تمكن الفريق من طباعة أسطوانات يصل ارتفاعها إلى أربعة سنتيمترات، وأنف يشبه أنف الإنسان، وجميعها تحتفظ بقوامها جيداً.

- نجاة دماغ الفأر
علاوةً على ذلك، تمكنت الخلايا الليفية البشرية، والخلايا الجذعية الوسيطة لنخاع العظم البشري، والخلايا العصبية لدماغ الفأر من النجاة وتكاثرت جيداً داخل مصفوفة «الهيدروجيل». وحفز العلماء الخلايا الجذعية الوسيطة للنخاع العظمي للتمايز داخل سقالة مطبوعة إلى نسيج مرن يشبه الغضروف خلال فترة 4 أسابيع.
وبعد التحقق من نجاة الخلية، يعمل الفريق في الوقت الراهن على تغيير كيمياء السطح لأحبارهم الحيوية بحيث تصبح مشابهة إلى حد كبير لبيئة الخلية في جسم الإنسان. وتعرب هاوزر عن طموحاتها في التطوير، فتقول: «إن خطوتنا التالية تكمن في الطباعة الحيوية لنماذج الأمراض ثلاثية الأبعاد وأعضاء مصغرة، وتشخيصها، ولاختبار الأدوية بإنتاجية عالية». وتضيف: «يمكن أن يسهم ذلك في تقليل وقت وتكلفة البحث عن أدوية شخصية وأكثر فاعلية».


مقالات ذات صلة

علماء ينتجون «نموذج جنين بشري» في المختبر

علوم النموذج تم تطويره باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء ينتجون «نموذج جنين بشري» في المختبر

أنتجت مجموعة من العلماء هيكلاً يشبه إلى حد كبير الجنين البشري، وذلك في المختبر، دون استخدام حيوانات منوية أو بويضات.

«الشرق الأوسط» (لندن)
علوم الهياكل الشبيهة بالأجنة البشرية تم إنشاؤها في المختبر باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء يطورون «نماذج أجنة بشرية» في المختبر

قال فريق من الباحثين في الولايات المتحدة والمملكة المتحدة إنهم ابتكروا أول هياكل صناعية في العالم شبيهة بالأجنة البشرية باستخدام الخلايا الجذعية.

«الشرق الأوسط» (لندن)
علوم علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

تمكنت مجموعة من العلماء من جمع وتحليل الحمض النووي البشري من الهواء في غرفة مزدحمة ومن آثار الأقدام على رمال الشواطئ ومياه المحيطات والأنهار.

«الشرق الأوسط» (نيويورك)
علوم صورة لنموذج يمثل إنسان «نياندرتال» معروضاً في «المتحف الوطني لعصور ما قبل التاريخ» بفرنسا (أ.ف.ب)

دراسة: شكل أنف البشر حالياً تأثر بجينات إنسان «نياندرتال»

أظهرت دراسة جديدة أن شكل أنف الإنسان الحديث قد يكون تأثر جزئياً بالجينات الموروثة من إنسان «نياندرتال».

«الشرق الأوسط» (لندن)
علوم دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

توصلت دراسة جديدة إلى نظرية جديدة بشأن كيفية نشأة القارات على كوكب الأرض مشيرة إلى أن نظرية «تبلور العقيق المعدني» الشهيرة تعتبر تفسيراً بعيد الاحتمال للغاية.

«الشرق الأوسط» (لندن)

الذكاء الاصطناعي في علوم تقويم الأسنان

الذكاء الاصطناعي في علوم تقويم الأسنان
TT

الذكاء الاصطناعي في علوم تقويم الأسنان

الذكاء الاصطناعي في علوم تقويم الأسنان

تقويم الأسنان هو ذلك الفرع من فروع طب الأسنان الذي يهتم بتشخيص ومعالجة اعوجاج الأسنان وسوء الإطباق وعدم تناسق حجم الفك العلوي مع الفك السفلي. ويُعاني نحو 45 في المائة من المراهقين العرب من سوء الإطباق، وهم بحاجة إلى علاجات تقويم الأسنان لتحسين صحتهم الفموية وعلاج تلك المشكلات.

إمكانات الذكاء الاصطناعي

يمتلك الذكاء الاصطناعي إمكانات هائلة في مجال تقويم الأسنان، مع تطبيقات تتراوح من الكشف التلقائي عن المعالم التشريحية وتحليل القياسات الرأسية إلى التشخيص وتخطيط العلاج، وتقييم النمو والتطور، وتقييم نتائج العلاج.

> الكشف التلقائي عن المعالم التشريحية وتحليل القياسات الرأسية. أحد المجالات الأكثر شيوعاً لاستخدام الذكاء الاصطناعي في تقويم الأسنان، هو الكشف التلقائي عن معالم القياسات الرأسية وتحليلها، وهي من أهم المؤشرات لتشخيص درجة سوء الإطباق أو اعوجاج الأسنان.ويتم إنشاء هذه القياسات بواسطة الذكاء الاصطناعي على الصور الشعاعية الثنائية والثلاثية الأبعاد (الأشعة المقطعية للفم والأسنان). وتُظهر الدراسات أن دقة هذه الأدوات تتنبأ بالنمو الهيكلي والسنوي العام لدى المرضى بنسبة تصل إلى 99 في المائة، مقارنة بنسبة 75 في المائة عند المراقبين البشر.

> تخطيط العلاج ودعم القرار السريري. التشخيص وتخطيط العلاج هما مكونات حاسمة في علاجات تقويم الأسنان، وينطويان على نظرة ذاتية وتعقيد كبير. وتساعد أنظمة دعم القرار السريري المعتمدة على الذكاء الاصطناعي في تقليل هذه التحديات من خلال مساعدة الأطباء. وعلى سبيل المثال، فإن قرار خلع الأسنان هو قرار مهم في تقويم الأسنان ويمكن أن يختلف بين طبيب وطبيب. وأظهرت أنظمة دعم القرار المعتمدة على الشبكات العصبية الاصطناعية دقة عالية في تقدير قرارات خلع الأسنان، حيث بلغت دقتها 94 في المائة. يمكن استخدام هذه الأدوات أيضاً لتقييم احتياجات علاج تقويم الأسنان وتقدير نتائج العلاج.

تقييم التماثل الوجهي

> تقييم التماثل الوجهي والتنبؤ بموقع الأسنان المدفونة. تم تطوير نماذج الذكاء الاصطناعي لتقييم التماثل الوجهي بدقة عالية قبل وبعد الجراحة الفكية باستخدام صور الأشعة المقطعية المخروطية (CBCT) للفم والأسنان، مما يوفر دقة تصل إلى 90 في المائة. وتساعد هذه النماذج أطباء تقويم الأسنان في الحصول على تقييم دقيق للحالة وتحليل التغيرات التي تحدث بعد الجراحة.

بالإضافة إلى ذلك، يمكن للذكاء الاصطناعي التنبؤ بموقع واتجاه ووضع الأسنان المدفونة أو المطمورة، مثل الأنياب، مما يوفر لأطباء تقويم الأسنان تصوراً ثلاثي الأبعاد مفصلاً للحالة السريرية. ويساعد هذا التصور في صياغة خطة علاجية شاملة ومتكاملة تأخذ في الاعتبار جميع الجوانب المعقدة للحالة، مما يضمن تحقيق أفضل النتائج العلاجية للمرضى وتقليل المخاطر المحتملة.

ماسحات ضوئية وطابعات تجسيمية

> التطورات في تكنولوجيا الماسحات الضوئية وعضات التقويم الشفاف. أحدثت التطورات في الماسحات الضوئية داخل الفم وتكنولوجيا الطابعة الثلاثية الأبعاد (التجسيمية) الطريق لتطوير برمجيات التنبؤ بالذكاء الاصطناعي لعلاج تقويم الأسنان.

> توفر هذه الأدوات الرقمية لتخطيط العلاج نهجاً دقيقاً لعلاج تقويم الأسنان، حيث تسمح لأطباء تقويم الأسنان بمحاكاة وتحريك الأسنان بدقة أثناء العلاج.

يتم صنع عضات التقويم الشفاف حسب خطة العلاج لتضمن ابتسامة جذابة ووظيفة فم طبيعية، مما يساعد في تحسين النتائج وتوضيح العملية العلاجية للمرضى.

> تقييم مجرى الهواء باستخدام الذكاء الاصطناعي. تلعب البرمجيات المعتمدة على الذكاء الاصطناعي دوراً هاماً في تقييم مجرى الهواء في تقويم الأسنان. يمكن لهذه البرمجيات تحديد أنماط مجرى الهواء، وتحديد التباينات التشريحية، وحساب حجم مجرى الهواء.

وتستخدم البرمجيات الترميز اللوني لتوفير تصور سهل لمجرى الهواء وهياكله، مما يساعد في صياغة أجهزة وعلاجات لوقف التنفس خلال النوم، وهو أمر مهم للغاية لصحة المريض.

رئيس جمعية الذكاء الاصطناعي في طب الأسنان في الشرق الأوسط.