نظم ذكاء صناعي تتعلم بطريقة ذاتية

«كاوست» تطرح نهجاً جديداً لتعلُّم الآلة من دون تدخل الإنسان

نظم ذكاء صناعي تتعلم بطريقة ذاتية
TT

نظم ذكاء صناعي تتعلم بطريقة ذاتية

نظم ذكاء صناعي تتعلم بطريقة ذاتية

من خلال استبدال شبكات أصغر حجماً، بأجزاء من نقاط الالتقاء في إحدى الشبكات العصبية، ابتكر فريق بحثي في جامعة الملك عبد الله للعلوم والتقنية (كاوست) ومختبر الذكاء الصناعي السويسري (IDSIA) نموذجاً عاماً للذكاء الصناعي بإمكانه التطوّر ذاتياً.
يشير الفريق إلى أن الدراسات الأولية التي تسعى لإثبات مفهوم النموذج قد تمكّن الجيل الجديد من الذكاء الصناعي مما يمكن تسميته «تعلُّم التعلُّم» دون تدخل البرمجة البشرية. وتُفسح طريقة «تعلُّم ما بعد التعلُّم» المجال أمام اكتشاف خوارزميات «التعلُّم العام الجديدة»، التي في وسعها حل مشكلاتٍ لم يواجهها الذكاء الصناعي من قبل.
في عام 1956 ظهر مصطلح الذكاء الصناعي (Artificial Intelligence)، الذي صاغه عالم الحاسوب الأميركي جون مكارثي (1927 - 2011) للإشارة لما كان يقوم به العلماء آنذاك حول إمكانية تصميم آلة ذكية قادرة على تقليد ومحاكاة عمل البشر.
منذ ذاك الوقت ظهرت مصطلحات أخرى منبثقة من الذكاء الصناعي أحدثت ارتباكاً لدى البعض، مثل التعلم العميق (Deep Learning) وتعلُّم الآلة (Machine learning).
التعلم العميق هو أحد فروع تعلم الآلة، حيث تصمم الخوارزميات (Algorithms) المستخدمة فيه على محاكاة بنية ووظيفة الدماغ البشري، ويطلق عليها اسم «الشبكات العصبية الصناعية». أما تعلم الآلة، فهو ذلك العلم الذي يدرس منح الآلات والحواسيب القدرة على التعلم دون أن تتم برمجتها صراحة من خلال استكشاف خوارزميات تستطيع أن تتعلم ذاتياً، وتصنع التنبؤات بخصوص البيانات دون تدخل بشري.
> الشبكات العصبية. أكثر نماذج الذكاء الصناعي شيوعاً اليوم هي الشبكات العصبية الصناعية (ANNs)، وهي شبكاتٌ مترابطة من نقاط الالتقاء التي تُمكن برمجتها، وتتميز بوجود وصلات يتم تعديلها تدريجياً استجابةً للبيانات التي ستتدرب عليها. يُطلق على البرنامج المستخدم لتغيير «الأوزان» في الترجيح اسم خوارزمية التعلم (LA)، والتي كوّنها وهيأها المطور البشري.
وتعد خوارزميات التعلُّم الانتشار العكسي (backpropagation) من أشهرها، التي من خلاله «تتعلّم» الشبكات العصبية، عبر ضبط الأوزان، إعطاء الإجابات الصحيحة للمدخلات التي تتدرب عليها. مع ذلك، فإن هذه الخوارزميات تقتصر على ما يخترعه البشر وقد لا ترقى إلى المستوى الأمثل.
> تعلُّم ما بعد التعلُّم. يقول عالم الحاسوب الشهير البروفسور يورغن شميدهوبر، رئيس مبادرة «كاوست للذكاء الصناعي»: «منذ سبعينات القرن الماضي، كان هدفي الرئيسي تصميم ذكاء صناعي يتحسّن ويتطور ذاتياً، ويفوقني ذكاءً». ويضيف: «في هذا العمل، ابتكرنا نهجاً يمكّن الخوارزميات من (تعلُّم ما بعد التعلُّم)، أو ما يطلق عليه (ميتا التعلُّم Meta Learning)، التي ستُنافس خوارزمية الانتشار العكسي القديمة التي تم تصميمها».
و«ميتا التعلُّم» هو اتجاه جديد للاستفادة الكاملة من المعرفة والخبرة السابقة لتوجيه تعلم المهام الجديدة، أي القدرة على التعلم والتعلم.
استبدل كل من شميدهوبر مع طالب الدكتوراه لوي كيرش بأوزان نقاط الالتقاء، شبكات عصبية دقيقة الحجم، مهمتها اكتشاف خوارزميات جيدةٍ لتغيير الأوزان بمفردها، أي أن تُجري تعديلاتٍ بسيطة ذات تأثيراتٍ هائلة.
يضيف شميدهوبر: «في طريقتنا المقترحة، المسماة (ميتا / ما بعد التعلُّم المتغيّر والمشترك Variable Shared Meta Learning) أو (VSML)، لا تُحدّث خوارزمية التعلُّم التي اخترعها الإنسان أوزان الشبكات العصبية مباشرةً لتحسين عمل الخوارزمية؛ بل تعلم الشبكة نفسها كيفية تطويّر أدائها. في هذا، وعليه فإنها لن تستخدم الانتشار العكسي، لكنها تكتشف طرقاً جديدةً للتعلُّم، تختلف عمّا طوّره الإنسان سابقاً». كانت طرق «ميتا التعلُّم» السابقة عادةً محدودة في نطاقاتٍ ضيقة لمشكلات متشابهة. لكن، الأهم، أن طريقة (VSML) تُفسح المجال أمام اكتشاف خوارزميات التعلُّم العام الجديدة، التي في وسعها حل مشكلاتٍ لم يواجهها الذكاء الصناعي من قبل.
أجرى شميدهوبر وكيرش مجموعة من التجارب باستخدام الطريقة التي طورها الفريق، (VSML)، لقياس سرعة تعلُّمها وقدرتها على التكيف واكتشافها طرقاً تحسّن بها أية عراقيل متعلقة بتحسين خوارزمية الانتشار العكسي.
يقول شميدهوبر: «اخترع البشر أشهر خوارزميات التعلم الآلي، لكن هل في وسعنا أيضاً إعداد خوارزميات ما بعد أو ميتا التعلُّم، التي تتعلم على نحوٍ أفضل من أجل بناء ذكاء صناعي يطوّر نفسه بنفسه دون أية معوقات بخلاف الحدود التي تضعها الحاسوبية والفيزياء». مع ذلك، يُعتبر عمل شميدهوبر خطوةً في هذا الاتجاه.

الأب الروحي للذكاء الصناعي الحديث

انضم البروفسور يورغن شميدهوبر، المعروف عالمياً بـ«الأب الروحي للذكاء الصناعي الحديث» إلى جامعة الملك عبد الله للعلوم والتقنية (كاوست) عام 2021، رئيساً لمبادرة الذكاء الصناعي في الجامعة.
حصل شميدهوبر على درجة الدكتوراه في علوم الحاسب الآلي من جامعة ميونيخ التقنية (TUM)، وهو مؤسس مشارك وكبير العلماء في شركة (NNAISENSE)، وكان أخيراً مديراً علمياً في المختبر السويسري للذكاء الصناعي (IDSIA)، وأستاذاً للذكاء الصناعي في جامعة لوغانو، وحصل على عديد من الجوائز العالمية، وقام بتأليف أكثر من 350 ورقة بحثية، وهو متحدث رئيسي دائم ويعمل مستشاراً لعدد من الحكومات حول استراتيجيات الذكاء الصناعي.
يذكر أن الشبكات العصبية للتعلم العميق التي طورها مختبر شميدهوبر أحدثت ثورة في تقنية تعلُّم الآلة والذكاء الصناعي، حيث تم استخدامها بحلول منتصف عام 2010 على أكثر من 3 مليارات جهاز، وتم تطبيقها مليارات المرات يومياً بواسطة عملاء الشركات العالمية الأكثر قيمة في السوق العالمية، مثل تحسين الترجمة الآلية بشكل كبير في مترجم «غوغل» و«فيسبوك» (أكثر من 4 مليارات ترجمة في اليوم)، والمساعد الشخصي سيري (Siri) والطباعة السريعة (Quicktype) على أجهزة هواتف «أبل آيفون» جميعاً، وتحسين إجابات المساعد الشخصي أليكسا (Alexa) من «أمازون»، وعديد من التطبيقات الأخرى.


مقالات ذات صلة

رئيس «أبل» للمطورين الشباب في المنطقة: احتضنوا العملية... وابحثوا عن المتعة في الرحلة

تكنولوجيا تيم كوك في صورة جماعية مع طالبات أكاديمية «أبل» في العاصمة السعودية الرياض (الشرق الأوسط)

رئيس «أبل» للمطورين الشباب في المنطقة: احتضنوا العملية... وابحثوا عن المتعة في الرحلة

نصح تيم كوك، الرئيس التنفيذي لشركة «أبل»، مطوري التطبيقات في المنطقة باحتضان العملية بدلاً من التركيز على النتائج.

مساعد الزياني (دبي)
تكنولوجيا خوارزمية «تيك توك» تُحدث ثورة في تجربة المستخدم مقدمة محتوى مخصصاً بدقة عالية بفضل الذكاء الاصطناعي (أ.ف.ب)

خوارزمية «تيك توك» سر نجاح التطبيق وتحدياته المستقبلية

بينما تواجه «تيك توك» (TikTok) معركة قانونية مع الحكومة الأميركية، يظل العنصر الأبرز الذي ساهم في نجاح التطبيق عالمياً هو خوارزميته العبقرية. هذه الخوارزمية…

عبد العزيز الرشيد (الرياض)
خاص تم تحسين هذه النماذج لمحاكاة سيناريوهات المناخ مثل توقع مسارات الأعاصير مما يسهم في تعزيز الاستعداد للكوارث (شاترستوك)

خاص «آي بي إم» و«ناسا» تسخّران نماذج الذكاء الاصطناعي لمواجهة التحديات المناخية

«الشرق الأوسط» تزور مختبرات أبحاث «IBM» في زيوريخ وتطلع على أحدث نماذج الذكاء الاصطناعي لفهم ديناميكيات المناخ والتنبؤ به.

نسيم رمضان (زيوريخ)
خاص يمثل تحول الترميز الطبي في السعودية خطوة حاسمة نحو تحسين كفاءة النظام الصحي ودقته (شاترستوك)

خاص ما دور «الترميز الطبي» في تحقيق «رؤية 2030» لنظام صحي مستدام؟

من معالجة اللغة الطبيعية إلى التطبيب عن بُعد، يشكل «الترميز الطبي» عامل تغيير مهماً نحو قطاع طبي متطور ومستدام في السعودية.

نسيم رمضان (لندن)
خاص من خلال الاستثمارات الاستراتيجية والشراكات وتطوير البنية التحتية ترسم السعودية مساراً نحو أن تصبح قائداً عالمياً في التكنولوجيا (شاترستوك)

خاص كيف يحقق «الاستقلال في الذكاء الاصطناعي» رؤية السعودية للمستقبل؟

يُعد «استقلال الذكاء الاصطناعي» ركيزة أساسية في استراتيجية المملكة مستفيدة من قوتها الاقتصادية والمبادرات المستقبلية لتوطين إنتاج رقائق الذكاء الاصطناعي.

نسيم رمضان (لندن)

«مرايا» الذكاء الاصطناعي تعكس دواخلها «مع كل التحيزات»

«بوابة السحاب» مرآة تعكس الحياة وتشوهاتها
«بوابة السحاب» مرآة تعكس الحياة وتشوهاتها
TT

«مرايا» الذكاء الاصطناعي تعكس دواخلها «مع كل التحيزات»

«بوابة السحاب» مرآة تعكس الحياة وتشوهاتها
«بوابة السحاب» مرآة تعكس الحياة وتشوهاتها

قبل بضع سنوات، وجدت شانون فالور نفسها أمام تمثال «بوابة السحاب (Cloud Gate)»، الضخم المُصمَّم على شكل قطرة زئبقية من تصميم أنيش كابور، في حديقة الألفية في شيكاغو. وبينما كانت تحدق في سطحه اللامع المرآتي، لاحظت شيئاً، كما كتب أليكس باستيرناك (*).

وتتذكر قائلة: «كنت أرى كيف أنه لا يعكس أشكال الأفراد فحسب، بل والحشود الكبيرة، وحتى الهياكل البشرية الأكبر مثل أفق شيكاغو... ولكن أيضاً كانت هذه الهياكل مشوَّهة؛ بعضها مُكبَّر، وبعضها الآخر منكمش أو ملتوٍ».

الفيلسوفة البريطانية شانون فالور

تشويهات التعلم الآلي

بالنسبة لفالور، أستاذة الفلسفة في جامعة أدنبره، كان هذا يذكِّرنا بالتعلم الآلي، «الذي يعكس الأنماط الموجودة في بياناتنا، ولكن بطرق ليست محايدة أو موضوعية أبداً»، كما تقول. أصبحت الاستعارة جزءاً شائعاً من محاضراتها، ومع ظهور نماذج اللغة الكبيرة (والأدوات الكثيرة للذكاء الاصطناعي التي تعمل بها)، اكتسبت مزيداً من القوة.

مرايا الذكاء الاصطناعي مثل البشر

تبدو «مرايا» الذكاء الاصطناعي مثلنا كثيراً؛ لأنها تعكس مدخلاتها وبيانات التدريب، مع كل التحيزات والخصائص التي يستلزمها ذلك. وبينما قد تنقل القياسات الأخرى للذكاء الاصطناعي شعوراً بالذكاء الحي، فإن «المرآة» تعبير أكثر ملاءمة، كما تقول فالور: «الذكاء الاصطناعي ليس واعياً، بل مجرد سطح مسطح خامل، يأسرنا بأوهامه المرحة بالعمق».

غلاف كتاب «مرايا الذكاء الاصطناعي»

النرجسية تبحث عن صورتها

كتابها الأخير «مرآة الذكاء الاصطناعي (The AI Mirror)»، هو نقد حاد وذكي يحطِّم عدداً من الأوهام السائدة التي لدينا حول الآلات «الذكية». يوجه بعض الاهتمام الثمين إلينا نحن البشر. في الحكايات عن لقاءاتنا المبكرة مع برامج الدردشة الآلية، تسمع أصداء نرجس، الصياد في الأساطير اليونانية الذي وقع في حب الوجه الجميل الذي رآه عندما نظر في بركة من الماء، معتقداً بأنه شخص آخر. تقول فالور، مثله، «إن إنسانيتنا مُعرَّضة للتضحية من أجل هذا الانعكاس».

تقول الفيلسوفة إنها ليست ضد الذكاء الاصطناعي، لكي نكون واضحين. وسواء بشكل فردي، أو بصفتها المديرة المشارِكة لمنظمة «BRAID»، غير الربحية في جميع أنحاء المملكة المتحدة المكرسة لدمج التكنولوجيا والعلوم الإنسانية، قدَّمت فالور المشورة لشركات وادي السيليكون بشأن الذكاء الاصطناعي المسؤول.

نماذج «مسؤولة» ومختبرة

وهي ترى بعض القيمة في «نماذج الذكاء الاصطناعي المستهدفة بشكل ضيق والآمنة والمختبرة جيداً والمبررة أخلاقياً وبيئياً» لمعالجة المشكلات الصحية والبيئية الصعبة. ولكن بينما كانت تراقب صعود الخوارزميات، من وسائل التواصل الاجتماعي إلى رفاق الذكاء الاصطناعي، تعترف بأن ارتباطها بالتكنولوجيا كان مؤخراً «أشبه بالوجود في علاقة تحوَّلت ببطء إلى علاقة سيئة. أنك لا تملك خيار الانفصال».

فضائل وقيم إنسانية

بالنسبة لفالور، إحدى الطرق للتنقل وإرشاد علاقاتنا المتزايدة عدم اليقين بالتكنولوجيا الرقمية، هي الاستفادة من فضائلنا وقيمنا، مثل العدالة والحكمة العملية. وتشير إلى أن الفضيلة لا تتعلق بمَن نحن، بل بما نفعله، وهذا جزء من «صراع» صنع الذات، بينما نختبر العالم، في علاقة مع أشخاص آخرين. من ناحية أخرى، قد تعكس أنظمة الذكاء الاصطناعي صورة للسلوك أو القيم البشرية، ولكن كما كتبت في كتابها، فإنها «لا تعرف عن التجربة الحية للتفكير والشعور أكثر مما تعرف مرايا غرف نومنا آلامنا وأوجاعنا الداخلية».

الخوارزميات والعنصرية وعدم المساواة

في الوقت نفسه تعمل الخوارزميات المدربة على البيانات التاريخية، بهدوء، على تقييد مستقبلنا بالتفكير نفسه الذي ترك العالم «مليئاً بالعنصرية والفقر، وعدم المساواة، والتمييز، وكارثة المناخ».

«كيف سنتعامل مع تلك المشكلات الناشئة التي ليست لها سابقة؟»، تتساءل فالور، وتشير: «مرايانا الرقمية الجديدة تشير إلى الوراء».

الاعتماد على السمات البشرية المفيدة

مع اعتمادنا بشكل أكبر على الآلات، وتحسينها وفقاً لمعايير معينة مثل الكفاءة والربح، تخشى فالور أننا نخاطر بإضعاف عضلاتنا الأخلاقية أيضاً، وفقدان المسار للقيم التي تجعل الحياة تستحق العناء.

مع اكتشافنا لما يمكن أن يفعله الذكاء الاصطناعي، سنحتاج إلى التركيز على الاستفادة من السمات البشرية الفريدة أيضاً، مثل التفكير القائم على السياق والحكم الأخلاقي، وعلى تنمية قدراتنا البشرية المتميزة. كما تعلمون. وهي تقول: «لسنا بحاجة إلى هزيمة الذكاء الاصطناعي. نحن بحاجة إلى عدم هزيمة أنفسنا».

* مجلة «فاست كومباني» - خدمات «تريبيون ميديا»

اقرأ أيضاً