الذكاء الاصطناعي لضبط توازن مرضى باركنسون

بتوظيف الخوارزميات وأجهزة الاستشعار القابلة للارتداء

الذكاء الاصطناعي لضبط توازن مرضى باركنسون
TT

الذكاء الاصطناعي لضبط توازن مرضى باركنسون

الذكاء الاصطناعي لضبط توازن مرضى باركنسون

يعتمد الأطباء على الملاحظات الشخصية والمعدات المتخصصة لقياس التوازن لدى الأفراد الذين يعانون من حالات مثل مرض باركنسون، والإصابات العصبية، والتدهور المرتبط بالعمر. وقد تفتقر هذه الأساليب، وخاصة منها الذاتية، إلى الدقة، ويصعب إدارتها عن بعد، وغالباً ما تكون غير متسقة.

ولمعالجة هذه القيود، طور باحثون من جامعة فلوريدا أتلانتيك نهجاً جديداً باستخدام أجهزة استشعار يمكن ارتداؤها وخوارزميات التعلم الآلي المتقدمة التي يمكن أن تعيد تعريف ممارسات تقييم التوازن.

5 مواقع للاستشعار

استخدم الباحثون أجهزة استشعار وحدة القياس بالقصور الذاتي Inertial (IMU) Measurement Unit القابلة للارتداء التي تم وضعها في خمسة مواقع من الجسم: الكاحل، والفقرات القطنية في أسفل الظهر، وعظم القص، والمعصم، والذراع.

ولدى جمع البيانات اتبع الباحثون بروتوكول الاختبار السريري المعدل للتفاعل الحسي على التوازن (m - CTSIB)، حيث تم اختبار 4 حالات حسية: عندما تكون العينان مفتوحتين ومغلقتين عند الوقوف على الأسطح المستقرة والرغوية. واستغرق كل اختبار نحو 11 ثانية، لمحاكاة سيناريوهات التوازن المستمر.

راصدات الظهر والكاحل

قام العلماء بمعالجة واستخراج الميزات من بيانات المستشعر الأولية، ثم طبقوا 3 خوارزميات التعلم الآلي لتقدير درجات هذا الاختبار. أنتجت أجهزة الاستشعار في الفقرات القطنية والكاحل أعلى أداء في تقدير درجة التوازن.

وخلص الباحثون، الذين نشروا دراستهم في مجلة «Frontiers in Digital Health»، إلى أن «النتائج التي توصلوا إليها تمهد الطريق لإجراء تقييمات أكثر دقة وملاءمة للتوازن». وذكروا أن هذا النهج لديه «إمكانات هائلة لتعزيز تقييم أداء التوازن وإدارته في مختلف البيئات، بما في ذلك البيئات السريرية، وإعادة التأهيل، والمراقبة عن بعد».


مقالات ذات صلة

برامج للتحكّم بأسراب الطائرات من دون طيار الضخمة

علوم برامج للتحكّم بأسراب الطائرات من دون طيار الضخمة

برامج للتحكّم بأسراب الطائرات من دون طيار الضخمة

تقنيات «لمنع الحرب العالمية الثالثة»

باتريك تاكر (واشنطن)
تكنولوجيا «غوغل» تطلق النسخة الأولية من آندرويد 16 للمطورين مع ميزات جديدة لتعزيز الخصوصية ومشاركة البيانات الصحية (غوغل)

«غوغل» تطلق النسخة الأولية من آندرويد 16 للمطورين مع ميزات جديدة

أطلقت «غوغل» النسخة التجريبية الأولية من آندرويد 16 للمطورين، وهي خطوة تمهد الطريق للتحديثات الكبيرة المقبلة في هذا النظام.

عبد العزيز الرشيد (الرياض)
الاقتصاد مهندس يعمل في إحدى المنشآت التابعة لـ«معادن» (الشركة) play-circle 02:41

رئيس «معادن»: حفر 820 ألف متر من آبار الاستكشاف بالسعودية خلال عامين

تتعاون شركة التعدين العربية السعودية (معادن) مع رواد العالم وتستفيد من أحدث التقنيات لتقديم أكبر برنامج تنقيب في منطقة واحدة على مستوى العالم.

آيات نور (الرياض)
الاقتصاد عرض تقديمي في إحدى الفعاليات التقنية التي أقيمت بالعاصمة السعودية الرياض (واس)

رئيس «سكاي»: الذكاء الاصطناعي يعزز مستقبل الاقتصاد السعودي

تتصدر الشركة السعودية للذكاء الاصطناعي (سكاي) مسيرة بناء منظومة تقنية عالمية المستوى ما يمهد الطريق لتحقيق نمو اقتصادي مدفوع بالذكاء الاصطناعي

آيات نور (الرياض)
تكنولوجيا تمكنك «دورا» من تصميم مواقع ثلاثية الأبعاد مذهلة بسهولة تامة باستخدام الذكاء الاصطناعي دون الحاجة لأي معرفة برمجية (دورا)

صمم موقعك ثلاثي الأبعاد بخطوات بسيطة ودون «كود»

تتيح «دورا» للمستخدمين إنشاء مواقع مخصصة باستخدام الذكاء الاصطناعي عبر إدخال وصف نصي بسيط.

عبد العزيز الرشيد (الرياض)

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»
TT

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

توصَّل باحثون في «مركز علوم الحياة بجامعة» فيلنيوس في ليتوانيا، إلى اكتشاف طريقة جديدة رائدة في مجال البحث الجيني تسمح بإسكات (أو إيقاف عمل) جينات معينة دون إجراء قطع دائم للحمض النووي (دي إن إيه).

وتُقدِّم الدراسة مساراً جديداً محتملاً لتعديل الجينات بشكل أكثر أماناً يشبه الضغط على زر «إيقاف مؤقت» على التعليمات الجينية داخل الخلايا.

آلية عمل نظام «كريسبر» الجديد

اكتشف فريق البروفسور باتريك باوش من معهد الشراكة لتقنيات تحرير الجينوم بمركز العلوم الحياتية في جامعة فيلنيوس بليتوانيا، بالتعاون مع خبراء دوليين في البحث المنشور في مجلة «Nature Communications» في 29 أكتوبر (تشرين الأول) 2024، نظاماً جديداً مختلفاً للتعديل الجيني.

وعلى عكس نظام «كريسبر كاس9 (CRISPR-Cas9)»، المعروف الذي اشتهر بقدرته على قطع الحمض النووي (DNA)، يعمل نظام «كريسبر» من النوع «آي في إيه» (IV-A CRISPR) بشكل مختلف، حيث يستخدم مركباً موجهاً بالحمض النووي الريبي لإسكات الجينات دون انشقاق خيوط الحمض النووي «دي إن إيه (DNA)».

كما يستخدم النظام الجديد مركباً مؤثراً يجنِّد إنزيماً يُعرف باسم «دين جي (DinG)». ويعمل هذا الإنزيم عن طريق التحرك على طول خيط الحمض النووي (DNA)، وتسهيل إسكات الجينات من خلال عملية غير جراحية.

تقنية «كريسبر-كاس9» للقص الجيني

هي أداة تعمل كمقص جزيئي لقص تسلسلات معينة من الحمض النووي (دي إن إيه). وتستخدم الحمض النووي الريبي الموجه للعثور على الحمض النووي المستهدف. و«كاس9» هو البروتين الذي يقوم بالقص، وهذا ما يسمح للعلماء بتعديل الجينات عن طريق إضافة أو إزالة أو تغيير أجزاء من الحمض النووي، وهو ما قد يساعد على علاج الأمراض الوراثية، وتعزيز الأبحاث.

** آفاق جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي

بروتينات وحلقات

يستخدم نظام «كريسبر» من النوع «IV-A» بروتينين مهمين، هما «Cas8»، و«Cas5» للعثور على بقع محددة على الحمض النووي (DNA). ويبحث هذان البروتينان عن تسلسل قصير من الحمض النووي بجوار المنطقة المستهدفة التي تتطابق مع دليل الحمض النووي الريبي. وبمجرد العثور عليه يبدآن في فك الحمض النووي وإنشاء هياكل تسمى حلقات «آر (R)».

وحلقات «آر» هي الأماكن التي يلتصق فيها الحمض النووي الريبي بخيط واحد من الحمض النووي (DNA)، وتعمل بوصفها إشارةً للنظام لبدء إيقاف أو إسكات الجين.

وكما أوضح البروفسور باوش، فإن «آر» في حلقة «R» تعني الحمض النووي الريبي. وهذه الهياكل أساسية لأنها تخبر النظام متى وأين يبدأ العمل. ولكي تكون حلقات «آر» مستقرةً وفعالةً يجب أن يتطابق الحمض النووي، ودليل الحمض النووي الريبي بشكل صحيح.

وظيفة إنزيم «دين جي»

يساعد إنزيم «DinG» نظام «كريسبر» على العمل بشكل أفضل من خلال فك خيوط الحمض النووي (DNA). وهذا يجعل من الأسهل على النظام التأثير على قسم أكبر من هذا الحمض النووي، ما يجعل عملية إسكات الجينات أكثر فعالية وتستمر لفترة أطول.

وأشار البروفسور باوش إلى أنه نظراً لأن إنزيم «DinG» يمكنه تغيير كيفية التعبير عن الجينات دون قطع الحمض النووي، فقد يؤدي ذلك إلى تطوير أدوات وراثية أكثر أماناً في المستقبل.

تطبيقات محتملة لتخفيف تلف الحمض النووي

يحمل الاكتشاف إمكانات هائلة لتحرير الجينوم والبحث في المستقبل، إذ يمكن أن تخفف الطبيعة غير القاطعة لهذه الطريقة من المخاطر المرتبطة بتلف الحمض النووي( DNA). وهو مصدر قلق عند توظيف تقنيات تحرير الجينات الحالية.

ومن خلال تمكين تعديل الجينات دون إحداث تغييرات دائمة في الحمض النووي( DNA) يمكن أن يكون هذا النهج الجديد مفيداً بشكل خاص في التطبيقات السريرية مثل العلاج الجيني للاضطرابات الوراثية. كما أن القدرة الفريدة لهذا النظام على عبور الحمض النووي دون إجراء قطع، أمر مثير للاهتمام لتطبيقات تحرير الجينات المتقدمة.

الدقة والسلامة

ويعتقد فريق البحث بأن هذه الطريقة يمكن أن تزوِّد العلماء وخبراء التكنولوجيا الحيوية بأدوات أكثر دقة لدراسة وظائف الجينات وتصحيح التشوهات الجينية بطريقة خاضعة للرقابة.

ويمثل الاكتشاف تقدماً كبيراً في مجال البحث الجيني؛ حيث يفتح نظام «كريسبر» من النوع «IV-A» آفاقاً جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي، ويمكن أن تحدث هذه الطريقة ثورةً في كيفية دراسة الأمراض الوراثية وعلاجها، مع التركيز على الدقة والسلامة.