كيف تمكن باحثو «كاوست» من تحويل «لعنة الأبعاد» إلى نعمة؟

ابتكار مخطط للوصول إلى تنبؤات مستقبلية أكثر دقة

كيف تمكن باحثو «كاوست» من تحويل «لعنة الأبعاد» إلى نعمة؟
TT

كيف تمكن باحثو «كاوست» من تحويل «لعنة الأبعاد» إلى نعمة؟

كيف تمكن باحثو «كاوست» من تحويل «لعنة الأبعاد» إلى نعمة؟

هل سبق لك أن كنتَ في منتصف سرد قصة لشخص ما أو كنت تحاول جاهداً شرح موضوع معقد، وفجأة ينظر إليك الشخص الآخر ويسأل: «ما الهدف؟» يمكننا هنا أن نرى أن هذا الشخص ربما يكون مشغولاً، ويريد فقط إجابة سريعة ودقيقة. وهذا هو جوهر مفهوم تقليل أو تقليص الأبعاد عند مواجهة كثير من البيانات، من أجل الوصول إلى الهدف أو المعلومة الدقيقة.
في عالم البيانات الضخمة اليوم، يشير مصطلح «لعنة الأبعاد» إلى مجموعة من المشكلات التي تنشأ عند التعامل مع البيانات عالية الأبعاد (أي تلك التي تحتوي على عدد كبير من السمات أو الملاحظات).
والصعوبات التي تأتي مع البيانات عالية الأبعاد عادة ما تظهر أثناء تحليل البيانات أو تصورها لتحديد الأنماط، وأيضاً تظهر أثناء تدريب نماذج التعلم الآلي، التحليل العددي، أخذ العينات، التوافقية، استخراج البيانات وقواعد البيانات. صاغ هذا المصطلح عالم الرياضيات التطبيقي الأميركي ريتشارد بيلمان (1984 - 1920) لوصف المشكلة الناجمة عن الزيادة الأسية في الحجم المرتبط بدوره بإضافة «أبعاد إضافية» إلى الفضاء الرياضي.

تنبؤات موثوقة
يعد التنبؤ لما سيحدث غداً من مشكلات وما يستجد من مخاطر ومهددات ركناً أساسياً من أركان التخطيط السليم للمستقبل، وفي هذا الاتجاه طوَّر فريق بحثي بقيادة جامعة الملك عبد الله للعلوم والتقنية (كاوست) مخططاً للتنبؤ، يمكن أن يتنبأ بالمسار المستقبلي للمَعلمات البيئية (خاصية متغيرة وقابلة للقياس تعتبر قيمتها عاملاً محدداً لخصائص نظام بيئي) بشكل أكثر موثوقية. وساعدهم على ذلك مسح البيانات السابقة لكل من التطابقات الجزئية والكاملة، مع الاستعانة بالملاحظات الحالية.
وتعد عملية جمع البيانات على فترات منتظمة بمرور الوقت أمراً شائعاً في كثير من المجالات، لكنها واسعة الانتشار بشكل خاص في مجالات البيئة والنقل والبحوث البيولوجية، إذ تنبع أهمية هذه البيانات من استخدامها لمراقبة الحالة الراهنة وتسجيلها، وكذلك للمساعدة في التنبؤ بما قد يأتي في المستقبل.
تتمثل الطريقة الحالية لاستخدام هذه البيانات في البحث عن الأنماط أو المسارات السابقة في البيانات التي تتطابق مع المسار الحالي. لكن بشكل عملي لا توجد أي مطابقات كاملة على الإطلاق، وبالتالي يتعين على المتنبئ العثور على إطارات زمنية أصغر فأصغر في البيانات السابقة التي توفر تطابقاً جزئياً. وهو ما ينتج عنه فقدان السياق، وفقدان أي اتجاهات أكثر اتساعاً كانت لتعطي تنبؤاً أفضل، إضافة إلى احتمالية استقطاب ضجيج أو تشوش عشوائي.

تنبؤ وظيفي
يقول البروفسور هيرناندو أومباو، أستاذ الرياضيات التطبيقية والعلوم الحاسوبية بجامعة الملك عبد الله للعلوم والتقنية (كاوست): «إن التنبؤ بمسارات السلاسل الزمنية المستقبلية هو التحدي بعينه، نظراً لأن المسارات تتكون من كثير من الملاحظات المتسلسلة أو (الأبعاد)؛ ما يقلل من نجاح مناهج التنبؤ متعدد المتغيرات، وتُعرف هذه المشكلة بـ(لعنة الأبعاد)».
في سبيل التغلب على هذا التحدي، طوَّر الدكتور شيوهاو جياو، باحث ما بعد الدكتوراه في «كاوست»، طريقة تسمى التنبؤ الوظيفي الجزئي (PFP)، تقوم على دمج المعلومات من جميع المسارات السابقة الكاملة والجزئية. ويستخدم هذا النهج المُحسَّن جميع البيانات المتاحة؛ حيث يلتقط كلاً من الاتجاهات طويلة المدى والمسارات الجزئية المتطابقة جيداً.
يوضح جياو: «من خلال تسوية المسارات، يمكننا تحويل (لعنة الأبعاد) إلى نعمة عن طريق التقاط الصورة الكبيرة للمعلومات الديناميكية للمسارات». ويردف قائلاً: «تتضمن طريقتنا نهجاً لم تحققه الطرق السابقة؛ حيث يقوم بدمج كل من معلومات الاعتماد عبر المسارات وداخلها».
علاوةً على ذلك، يتضمن النهج إجراءً يتم بشكل تدريجي، حيث يتم تحليل البيانات أولاً لمسارات كاملة أطول، ومن ثَمّ يتم استخراج المكونات الجزئية «المتبقية»، واعتبارها أجزاءً مستقلة عن الاتجاهات السابقة، وأي شيء متبقٍ يتم تركه للضجيج العشوائي. وبعدها يتم تطبيق الخطوات الثلاث على نافذة التنبؤ.
تعاون فريق البحث مع البروفسور ألكسندر أوي، من جامعة كاليفورنيا؛ حيث تم تطبيق طريقة الباحثين هناك في التنبؤ بالجسيمات الدقيقة في الهواء وتدفق حركة المرور، وبيّنوا أن طريقة التنبؤ الوظيفي الجزئي (PFP) أعطت تنبؤات أكثر دقة بكثير من الطرق الحالية، خاصةً التنبؤات طويلة المدى. يقول أومباو: «تشير طريقتنا إلى إمكانية تحقيق تحسُّن واضح في التنبؤ بالمسارات المستقبلية، من خلال دمج معلومات التبعية داخل المسارات وعبرها».


مقالات ذات صلة

علماء ينتجون «نموذج جنين بشري» في المختبر

علوم النموذج تم تطويره باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء ينتجون «نموذج جنين بشري» في المختبر

أنتجت مجموعة من العلماء هيكلاً يشبه إلى حد كبير الجنين البشري، وذلك في المختبر، دون استخدام حيوانات منوية أو بويضات.

«الشرق الأوسط» (لندن)
علوم الهياكل الشبيهة بالأجنة البشرية تم إنشاؤها في المختبر باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء يطورون «نماذج أجنة بشرية» في المختبر

قال فريق من الباحثين في الولايات المتحدة والمملكة المتحدة إنهم ابتكروا أول هياكل صناعية في العالم شبيهة بالأجنة البشرية باستخدام الخلايا الجذعية.

«الشرق الأوسط» (لندن)
علوم علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

تمكنت مجموعة من العلماء من جمع وتحليل الحمض النووي البشري من الهواء في غرفة مزدحمة ومن آثار الأقدام على رمال الشواطئ ومياه المحيطات والأنهار.

«الشرق الأوسط» (نيويورك)
علوم صورة لنموذج يمثل إنسان «نياندرتال» معروضاً في «المتحف الوطني لعصور ما قبل التاريخ» بفرنسا (أ.ف.ب)

دراسة: شكل أنف البشر حالياً تأثر بجينات إنسان «نياندرتال»

أظهرت دراسة جديدة أن شكل أنف الإنسان الحديث قد يكون تأثر جزئياً بالجينات الموروثة من إنسان «نياندرتال».

«الشرق الأوسط» (لندن)
علوم دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

توصلت دراسة جديدة إلى نظرية جديدة بشأن كيفية نشأة القارات على كوكب الأرض مشيرة إلى أن نظرية «تبلور العقيق المعدني» الشهيرة تعتبر تفسيراً بعيد الاحتمال للغاية.

«الشرق الأوسط» (لندن)

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة
TT

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ابتكر أليكس ويلشكو، مؤسس شركة الذكاء الاصطناعي «أوسمو»، وفريقه نسخة «ألفا» من جهاز خيالي بحجم حقيبة الظهر مزودة بمستشعر شمّ يستخدم الذكاء الاصطناعي لتحديد المنتجات المقلدة من خلال تحليل تركيبها الكيميائي.

وأقامت شركة «أوسمو» (Osmo) شراكة مع منصات إعادة بيع الأحذية الرياضية لإظهار أن اختبار الشم عالي التقنية قادر على تحديد المنتجات المزيفة بدرجة عالية من الدقة.

الجزيئات المتطايرة تحدد الرائحة

كل شيء في العالم له رائحة، من الملابس إلى السيارات إلى جسمك. هذه الروائح هي جزيئات متطايرة، أو كيمياء «تطير» من تلك الأشياء وتصل إلى أنوفنا لتخبرنا بالأشياء. ويختبر الإنسان ذلك بوعي ووضوح عندما يكون هناك شيء جديد قرب أنفه، مثل شم سيارة جديدة أو زوج من الأحذية الرياضية. لكن حتى عندما لا تلاحظ الروائح، فإن الجزيئات موجودة دائماً.

رائحة المنتجات المقلَّدة

الأحذية المقلدة لها رائحة مختلفة عن الأحذية الحقيقية. إذ لا تختلف الأحذية الرياضية الأصلية والمقلدة في المواد، فحسب، لكن في التركيب الكيميائي. حتى الآن، اعتمدت شركات مثل «استوكس» (StockX) على اختبارات الشم البشري والفحص البصري لتمييز الأصالة - وهي عملية تتطلب عمالة مكثفة ومكلفة. وتهدف التقنية الجديدة إلى تبسيط العملية.

خريطة تحليل الفوارق اللونية

تدريب الذكاء الاصطناعي على الاختلافات الجزيئية

ووفقاً لويلشكو، درَّب فريقه «الذكاء الاصطناعي باستخدام أجهزة استشعار شديدة الحساسية للتمييز بين هذه الاختلافات الجزيئية».

وستغير هذه التكنولوجيا كيفية إجراء عمليات التحقق من الأصالة في الصناعات التي تعتمد تقليدياً على التفتيش اليدوي والحدس. وتهدف إلى رقمنة هذه العملية، وإضافة الاتساق والسرعة والدقة.

20 ثانية للتمييز بين المزيف والحقيقي

ويضيف أن آلة «أوسمو» تستغرق الآن نحو 20 ثانية للتمييز بين المنتج المزيف والحقيقي. وقريباً، كما يقول، ستقل الفترة إلى خمس ثوانٍ فقط. وفي النهاية، ستكون فورية تقريباً.

تم بناء أساس التقنية على سنوات من العمل المخبري باستخدام أجهزة استشعار شديدة الحساسية، كما يصفها ويلشكو، «بحجم غسالة الأطباق»، ويضيف: «تم تصميم أجهزة الاستشعار هذه لتكون حساسة مثل أنف الكلب، وقادرة على اكتشاف أضعف البصمات الكيميائية».

وتعمل هذه المستشعرات على مدار الساعة طوال أيام الأسبوع، وتجمع باستمرار البيانات حول التركيب الكيميائي لكل شيء من البرقوق والخوخ إلى المنتجات المصنعة»، كما يوضح ويلشكو.

خريطة الرائحة الرئيسية

تشكل البيانات التي تم جمعها العمود الفقري لعملية تدريب الذكاء الاصطناعي الخاصة بالشركة، والتي تساعد في إنشاء فهم عالي الدقة للروائح المختلفة ومنحها موقعاً في نظام إحداثيات يسمى خريطة الرائحة الرئيسية.

إذا كنت على دراية بكيفية ترميز ألوان الصورة في الصور الرقمية، فان الطريقة تعمل بشكل مماثل. إذ تقريباً، يتوافق لون البكسل مع مكان على خريطة RGB، وهي نقطة في مساحة ثلاثية الأبعاد بها إحداثيات حمراء وخضراء وزرقاء.

تعمل خريطة الرائحة الرئيسية بشكل مشابه، باستثناء أن الإحداثيات في تلك المساحة تتنبأ بكيفية ورود رائحة مجموعات معينة من الجزيئات في العالم الحقيقي. يقول ويلشكو إن هذه الخريطة هي الصلصة السرية لشركة «أوسمو» لجعل الاختبار ممكناً في الوحدات المحمولة ذات أجهزة استشعار ذات دقة أقل وحساسة تقريباً مثل أنف الإنسان.

من المختبر إلى الأدوات اليومية

يقول ويلشكو إنه في حين أن أجهزة الاستشعار المحمولة أقل حساسية من وحدات المختبر، فإن البيانات المكثفة التي يتم جمعها باستخدام أجهزة الاستشعار عالية الدقة تجعل من الممكن إجراء اكتشاف فعال للرائحة. مثل الذكاء الاصطناعي لقياس الصورة القادر على استنتاج محتويات الصورة لإنشاء نسخة بدقة أعلى بناءً على مليارات الصور من نموذجه المدرب، فإن هذا يحدث بالطريقة نفسها مع الرائحة. تعدّ هذه القدرة على التكيف أمراً بالغ الأهمية للتطبيقات في العالم الحقيقي، حيث لا يكون نشر جهاز بحجم المختبر ممكناً.

من جهته، يشير روهينتون ميهتا، نائب الرئيس الأول للأجهزة والتصنيع في «أوسمو»، إلى أن مفتاح عملية التعريف لا يتعلق كثيراً بالروائح التي يمكننا إدراكها، لكن بالتركيب الكيميائي للكائن أو الشيء، وما يكمن تحته. ويقول: «الكثير من الأشياء التي نريد البحث عنها والتحقق من صحتها قد لا يكون لها حتى رائحة محسوسة. الأمر أشبه بمحاولة تحليل التركيب الكيميائي».

وهو يصف اختباراً تجريبياً أجرته الشركة مؤخراً مع شركة إعادة بيع أحذية رياضية كبيرة حقق معدل نجاح يزيد على 95 في المائة في التمييز بين الأحذية المزيفة والأحذية الحقيقية.

إلا أن الطريقة لا تعمل إلا مع الأشياء ذات الحجم الكبير، في الوقت الحالي. ولا يمكن للتكنولوجيا التحقق من صحة الأشياء النادرة جداً التي تم صنع ثلاثة منها فقط، مثلاً.

هذا لأنه، كما أخبرني ويلشكو، يتعلم الذكاء الاصطناعي باستخدام البيانات. لكي يتعلم رائحة طراز جديد معين من الأحذية، تحتاج إلى إعطائه نحو 10 أزواج من الأحذية الرياضية الحقيقية. في بعض الأحيان، تكون رائحة البصمة خافتة لدرجة أنه سيحتاج إلى 50 حذاءً رياضياً أصلياً ليتعلم الطراز الجديد.

خلق روائح جديدة

لا يشم مختبر «أوسمو» الأشياء التي صنعها آخرون فحسب، بل يخلق أيضاً روائح جديدة داخل الشركة باستخدام أنظمة الذكاء الاصطناعي والروبوتات نفسها. أظهر علماء الشركة كيف يعمل هذا بطريقة عملية خلال تجربة أطلقوا عليها اسم مشروع نقل الرائحة. لقد التقطوا رائحة باستخدام مطياف الكتلة للتفريق اللوني الغازي (GCMS)، الذي يحللها إلى مكوناتها الجزيئية ويحمل البيانات إلى السحابة. أصبحت هذه البيانات الملتقطة إحداثيات على خريطة الرائحة الرئيسية. بمجرد رسم الخريطة، يتم توجيه روبوت التركيب في مكان آخر لخلط عناصر مختلفة وفقاً لوصفة الرائحة، وإعادة إنشاء الرائحة الأصلية بشكل فعال.

رائحة مصنّعة لتعريف المنتجات

باستخدام تقنية تصنيع الرائحة نفسها، يتخيل ويلشكو أن «أوسمو» يمكن أن تدمج جزيئات عديمة الرائحة مباشرة في المنتجات بصفتها معرفاتٍ فريدة؛ مما يخلق توقيعاً غير مرئي لن يكون لدى المزورين أي طريقة لاكتشافه أو تكراره. فكر في هذا باعتباره ختماً غير مرئي للأصالة.

وتعمل شركة «أوسمو» على تطوير هذه العلامات الفريدة لتُدمج في مواد مثل الغراء أو حتى في القماش نفسه؛ ما يوفر مؤشراً سرياً لا لبس فيه على الأصالة.

هناك فرصة كبيرة هنا. وكما أخبرني ويلشكو، فإن صناعة الرياضة هي سوق بمليارات الدولارات، حيث أعلنت شركة «نايكي» وحدها عن إيرادات بلغت 60 مليار دولار في العام الماضي. ومع ذلك، تنتشر النسخ المقلدة من منتجاتها على نطاق واسع، حيث أفادت التقارير بأن 20 مليار دولار من السلع المقلدة تقطع هذه الإيرادات. وقد صادرت الجمارك وحماية الحدود الأميركية سلعاً مقلدة بقيمة مليار دولار فقط في العام الماضي في جميع قطاعات الصناعة، وليس فقط السلع الرياضية. ومن الواضح أن تقنية الرائحة هذه يمكن أن تصبح سلاحاً حاسماً لمحاربة المنتجات المقلدة، خصوصاً في أصعب الحالات، حيث تفشل الأساليب التقليدية، مثل فحص العلامات المرئية.

الرائحة هي مفتاح المستقبل

يرى ويلشكو أن النظام جزء من استراتيجية أوسع لرقمنة حاسة الشم - وهو مفهوم بدأ العمل عليه عند عمله في قسم أبحاث «غوغل». إن أساس النظام يكمن في مفهوم يسمى العلاقة بين البنية والرائحة. وتتلخص هذه العلاقة في التنبؤ برائحة الجزيء بناءً على بنيته الكيميائية، وكان مفتاح حل هذه المشكلة هو استخدام الشبكات العصبية البيانية.

إمكانات طبية لرصد الأمراض

إن الإمكانات الطبية لهذه التقنية هي تحويلية بالقدر نفسه. ويتصور ويلشكو أن النظام يمكن استخدامه للكشف المبكر عن الأمراض - مثل السرطان أو السكري أو حتى الحالات العصبية مثل مرض باركنسون - من خلال تحليل التغييرات الدقيقة في رائحة الجسم التي تسبق الأعراض غالباً.

لكنه يقول إنه حذّر بشأن موعد حدوث هذا التقدم؛ لأنه يجب على العلماء أن يحددوا أولاً العلامات الجزيئية لهذه الروائح قبل أن تتمكن الآلة من اكتشاف أمراض مختلفة. وتعمل الشركة بالفعل مع عدد من الباحثين في هذا المجال.

* مجلة «فاست كومباني» - خدمات «تريبيون ميديا»