«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

هيدروجيل حيوي يسهم في تشكيل خلايا لأنسجة قادرة على البقاء

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
TT

«كاوست»: أسلوب واعد للطباعة الحيوية الثلاثية الأبعاد

الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد
الباحث هيبي هاري سوسابتو في الفريق المطور لأسلوب الطباعة الحيوية الجديد

شهدت الفترة ما بين 1984 وحتى 1988 ميلادي ولادة التصنيع الإضافي، أو ما يعرف باسم الطباعة ثلاثية الأبعاد على يد المهندس الأميركي تشاك هال. ومنذ ذلك الوقت تعددت الاستخدامات الحديثة لهذه التقنية لتشمل تقريبا كافة مناحي الحياة بما فيها المجال الصحي والطبي.
وتكمن ميزة استخدام تقنيات الطباعة ثلاثية الأبعاد (التجسيمية) بشكل عام في قابلية أتمتتها ومساهمتها في زيادة تشكيل الأعضاء وإنتاجها على نطاق أكبر فضلاً عن الدقة الكبيرة التي تتمتع بها. ومن أبرز تطبيقات الطباعة ثلاثية الأبعاد في المجال الطبي، إنتاج أطراف وأجزاء صناعية مخصصة لتناسب مرتديها، وكذلك الضمادات الذكية، وتركيبات الفم والأسنان، والأدوات الطبية.

- طباعة حيوية
كما حقق العلماء وشركات التقنية الحيوية تقدما كبيرا خلال السنوات الماضية في استخدام أدوات الطباعة الحيوية لإنشاء نسيج حي صناعي في المختبر عبر وضع طبقات الخلايا الحية، المسماة بـ«الحبر الحيوي»، فوق بعضها البعض، وطباعة الأعضاء والأنسجة للمساعدة على دراستها في المختبر وفي الأبحاث الطبية.
ويمكن تعريف الطباعة الحيوية على أنها طباعة ثلاثية الأبعاد تشتمل على خلايا حية ومواد حيوية في صورة أحبار لتصنيع الخلايا والأنسجة والهياكل الحيوية بمساعدة الكومبيوتر. وبمعنى آخر أنها منصة تصنيع تنتج هياكل تشبه الأنسجة الحية ثلاثية الأبعاد بما فيها من أوعية دموية دقيقة.
هذه التقنية تتمتع بإمكانية إحداث ثورة كبيرة في هندسة الأنسجة حيث يتم التركيز على تطوير بدائل بيولوجية قادرة على أن تحل محل الأنسجة التالفة أو إصلاحها في جسم الإنسان، مما يمهد لطباعة أعضاء بشرية باستخدام الطباعة ثلاثية الأبعاد يمكن زرعها في المستقبل في الجسم البشري. أيضاً تدعم هذه التقنية توجهات الطب الشخصي خاصةً فيما يتعلق بتشخيص الأمراض وتطوير الأدوية لها، وذلك بتجربة اختبار تأثيرها على الأعضاء المطبوعة ودراسة أعراضها، والاستغناء عن تجربتها على الحيوانات، قبل طرحها واستخدامها.

أسطوانات مطبوعة حيوياً يصل ارتفاعها إلى أربعة سنتيمترات تحتفظ بقوامها جيداً

- أسلوب جديد
الآن أصبح باستطاعة عملية جديدة مؤتمتة طورها باحثو جامعة الملك عبد الله للعلوم والتقنية (كاوست)؛ من طباعة «سقالة هيدروجيل» قائمة على «الببتيد»، وفي داخلها خلايا موزعة بشكل منتظم. وتحتفظ السقالات بشكلها بمهارة، كما تسهل عملية نمو الخلايا الذي يستمر لأسابيع.
ويذكر أن الطباعة الثلاثية الأبعاد ساهمت في عملية تصنيع الأنسجة الحيوية، وقد نجحت في طباعة «أحبار هيدروجيل الحيوية»، بالإضافة إلى إمكاناتها الكبيرة في استخدام الخلايا الجذعية في الطباعة الحيوية، بجعلها قادرة على إنتاج أنسجة وأعضاء جديدة للإنسان.
و«الهيدروجيل» عبارة عن مادة آمنة ثلاثية الأبعاد مترابطة ذات مظهر صلب مكونة من سلاسل متشابكة من البوليمرات لديها القدرة على امتصاص كمية كبيرة من الماء والاحتفاظ بها، ويمكن للخلايا أن تنمو بداخلها. ويمكن الحصول على هذه البوليمرات من الطبيعة أو عن طريق تصنيعها.
اختبر العلماء «أحباراً حيوية» منها الطبيعي والصناعي؛ لطباعة السقالات التي تثبت الخلايا في مكانها حيث تنمو وتشكل نسيجا له قوام خاص. ولكن هناك تحديات تمثل حجر عثرة أمام بقاء الخلية وديمومتها. وذلك نظراً لأن الأحبار الحيوية الطبيعية، مثل: الجيلاتين والكولاجين تحتاج إلى المعالجة بالمواد الكيميائية أو الأشعة فوق البنفسجية للحفاظ على شكلها، مما يؤثر على حيوية الخلية. بالإضافة إلى أن الهلاميات المائية القائمة على البوليمرات الصناعية، والتي تم اختبارها حتى الآن، تتطلب استخدام مواد كيميائية قاسية وظروف تهدد بقاء الخلية.
لكن هذا العائق لم يثنِ فريق البروفسورة شارلوت هاوزر، رئيسة قسم الهندسة الحيوية بـ«كاوست» عن هدفه؛ حيث طور عملية طباعة حيوية باستخدام «الببتيدات فائقة القصر» كركيزة أساسية في عملية تحبير السقالات، وذلك بتصميم ثلاثة «ببتيدات» باستخدام تركيبات مختلفة من الأحماض الأمينية مثل: إيزولوسين، لايسين، فينيل ألانين، وسيكلوهكسيل ألانين.
و«الببتيد» هو سلسلة من الأحماض الأمينية مرتبطة مع بعضها البعض مكونة ما يسمى بـ«الببتيدات» إذا ما زاد عدد الأحماض الأمينية عن 100 حمض بالبروتينات.

- منتجات فعلية
وإذا تطرقنا إلى الحديث عن الطباعة الفعلية، فقد استخدم الفريق فوهة جديدة ثلاثية المدخل؛ حيث ينتقل ببتيد «الحبر الحيوي» إلى مدخل واحد، وينتقل محلول منظم إلى مدخل آخر، ويتم إضافة الخلايا من خلال مدخل ثالث. وبالتالي فإن آلية عمل الطباعة الحيوية المذكورة تسمح لببتيد الحبر بالاختلاط تدريجياً مع المحلول المنظم، ثم يتحد مع الخلايا عند مخرج الفوهة. وبمجرد إخراج الحبر، فإنه يتصلب على الفور، ويحتجز الخلايا الموجودة داخل هيكله.
يقول هيبي هاري سوسابتو، الباحث في مرحلة الدكتوراة بـ«كاوست»: «إن العثور على مادة حيوية صديقة للخلايا، وتعزز بقاءها على المدى الطويل، ويمكن طباعتها أيضاً هو أمر عسير». ويردف قائلاً: «لكن الأحبار الحيوية الخاصة بنا والمصنوعة من الهلاميات المائية لببتيد فائق القصر وذاتي التجمع تجعل منه أمراً يسيراً».
بالاستعانة بهذه التقنيات، تمكن الفريق من طباعة أسطوانات يصل ارتفاعها إلى أربعة سنتيمترات، وأنف يشبه أنف الإنسان، وجميعها تحتفظ بقوامها جيداً.

- نجاة دماغ الفأر
علاوةً على ذلك، تمكنت الخلايا الليفية البشرية، والخلايا الجذعية الوسيطة لنخاع العظم البشري، والخلايا العصبية لدماغ الفأر من النجاة وتكاثرت جيداً داخل مصفوفة «الهيدروجيل». وحفز العلماء الخلايا الجذعية الوسيطة للنخاع العظمي للتمايز داخل سقالة مطبوعة إلى نسيج مرن يشبه الغضروف خلال فترة 4 أسابيع.
وبعد التحقق من نجاة الخلية، يعمل الفريق في الوقت الراهن على تغيير كيمياء السطح لأحبارهم الحيوية بحيث تصبح مشابهة إلى حد كبير لبيئة الخلية في جسم الإنسان. وتعرب هاوزر عن طموحاتها في التطوير، فتقول: «إن خطوتنا التالية تكمن في الطباعة الحيوية لنماذج الأمراض ثلاثية الأبعاد وأعضاء مصغرة، وتشخيصها، ولاختبار الأدوية بإنتاجية عالية». وتضيف: «يمكن أن يسهم ذلك في تقليل وقت وتكلفة البحث عن أدوية شخصية وأكثر فاعلية».


مقالات ذات صلة

علماء ينتجون «نموذج جنين بشري» في المختبر

علوم النموذج تم تطويره باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء ينتجون «نموذج جنين بشري» في المختبر

أنتجت مجموعة من العلماء هيكلاً يشبه إلى حد كبير الجنين البشري، وذلك في المختبر، دون استخدام حيوانات منوية أو بويضات.

«الشرق الأوسط» (لندن)
علوم الهياكل الشبيهة بالأجنة البشرية تم إنشاؤها في المختبر باستخدام الخلايا الجذعية (أرشيف - رويترز)

علماء يطورون «نماذج أجنة بشرية» في المختبر

قال فريق من الباحثين في الولايات المتحدة والمملكة المتحدة إنهم ابتكروا أول هياكل صناعية في العالم شبيهة بالأجنة البشرية باستخدام الخلايا الجذعية.

«الشرق الأوسط» (لندن)
علوم علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

علماء يتمكنون من جمع حمض نووي بشري من الهواء والرمال والمياه

تمكنت مجموعة من العلماء من جمع وتحليل الحمض النووي البشري من الهواء في غرفة مزدحمة ومن آثار الأقدام على رمال الشواطئ ومياه المحيطات والأنهار.

«الشرق الأوسط» (نيويورك)
علوم صورة لنموذج يمثل إنسان «نياندرتال» معروضاً في «المتحف الوطني لعصور ما قبل التاريخ» بفرنسا (أ.ف.ب)

دراسة: شكل أنف البشر حالياً تأثر بجينات إنسان «نياندرتال»

أظهرت دراسة جديدة أن شكل أنف الإنسان الحديث قد يكون تأثر جزئياً بالجينات الموروثة من إنسان «نياندرتال».

«الشرق الأوسط» (لندن)
علوم دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

دراسة تطرح نظرية جديدة بشأن كيفية نشأة القارات

توصلت دراسة جديدة إلى نظرية جديدة بشأن كيفية نشأة القارات على كوكب الأرض مشيرة إلى أن نظرية «تبلور العقيق المعدني» الشهيرة تعتبر تفسيراً بعيد الاحتمال للغاية.

«الشرق الأوسط» (لندن)

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»
TT

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

توصَّل باحثون في «مركز علوم الحياة بجامعة» فيلنيوس في ليتوانيا، إلى اكتشاف طريقة جديدة رائدة في مجال البحث الجيني تسمح بإسكات (أو إيقاف عمل) جينات معينة دون إجراء قطع دائم للحمض النووي (دي إن إيه).

وتُقدِّم الدراسة مساراً جديداً محتملاً لتعديل الجينات بشكل أكثر أماناً يشبه الضغط على زر «إيقاف مؤقت» على التعليمات الجينية داخل الخلايا.

آلية عمل نظام «كريسبر» الجديد

اكتشف فريق البروفسور باتريك باوش من معهد الشراكة لتقنيات تحرير الجينوم بمركز العلوم الحياتية في جامعة فيلنيوس بليتوانيا، بالتعاون مع خبراء دوليين في البحث المنشور في مجلة «Nature Communications» في 29 أكتوبر (تشرين الأول) 2024، نظاماً جديداً مختلفاً للتعديل الجيني.

وعلى عكس نظام «كريسبر كاس9 (CRISPR-Cas9)»، المعروف الذي اشتهر بقدرته على قطع الحمض النووي (DNA)، يعمل نظام «كريسبر» من النوع «آي في إيه» (IV-A CRISPR) بشكل مختلف، حيث يستخدم مركباً موجهاً بالحمض النووي الريبي لإسكات الجينات دون انشقاق خيوط الحمض النووي «دي إن إيه (DNA)».

كما يستخدم النظام الجديد مركباً مؤثراً يجنِّد إنزيماً يُعرف باسم «دين جي (DinG)». ويعمل هذا الإنزيم عن طريق التحرك على طول خيط الحمض النووي (DNA)، وتسهيل إسكات الجينات من خلال عملية غير جراحية.

تقنية «كريسبر-كاس9» للقص الجيني

هي أداة تعمل كمقص جزيئي لقص تسلسلات معينة من الحمض النووي (دي إن إيه). وتستخدم الحمض النووي الريبي الموجه للعثور على الحمض النووي المستهدف. و«كاس9» هو البروتين الذي يقوم بالقص، وهذا ما يسمح للعلماء بتعديل الجينات عن طريق إضافة أو إزالة أو تغيير أجزاء من الحمض النووي، وهو ما قد يساعد على علاج الأمراض الوراثية، وتعزيز الأبحاث.

** آفاق جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي

بروتينات وحلقات

يستخدم نظام «كريسبر» من النوع «IV-A» بروتينين مهمين، هما «Cas8»، و«Cas5» للعثور على بقع محددة على الحمض النووي (DNA). ويبحث هذان البروتينان عن تسلسل قصير من الحمض النووي بجوار المنطقة المستهدفة التي تتطابق مع دليل الحمض النووي الريبي. وبمجرد العثور عليه يبدآن في فك الحمض النووي وإنشاء هياكل تسمى حلقات «آر (R)».

وحلقات «آر» هي الأماكن التي يلتصق فيها الحمض النووي الريبي بخيط واحد من الحمض النووي (DNA)، وتعمل بوصفها إشارةً للنظام لبدء إيقاف أو إسكات الجين.

وكما أوضح البروفسور باوش، فإن «آر» في حلقة «R» تعني الحمض النووي الريبي. وهذه الهياكل أساسية لأنها تخبر النظام متى وأين يبدأ العمل. ولكي تكون حلقات «آر» مستقرةً وفعالةً يجب أن يتطابق الحمض النووي، ودليل الحمض النووي الريبي بشكل صحيح.

وظيفة إنزيم «دين جي»

يساعد إنزيم «DinG» نظام «كريسبر» على العمل بشكل أفضل من خلال فك خيوط الحمض النووي (DNA). وهذا يجعل من الأسهل على النظام التأثير على قسم أكبر من هذا الحمض النووي، ما يجعل عملية إسكات الجينات أكثر فعالية وتستمر لفترة أطول.

وأشار البروفسور باوش إلى أنه نظراً لأن إنزيم «DinG» يمكنه تغيير كيفية التعبير عن الجينات دون قطع الحمض النووي، فقد يؤدي ذلك إلى تطوير أدوات وراثية أكثر أماناً في المستقبل.

تطبيقات محتملة لتخفيف تلف الحمض النووي

يحمل الاكتشاف إمكانات هائلة لتحرير الجينوم والبحث في المستقبل، إذ يمكن أن تخفف الطبيعة غير القاطعة لهذه الطريقة من المخاطر المرتبطة بتلف الحمض النووي( DNA). وهو مصدر قلق عند توظيف تقنيات تحرير الجينات الحالية.

ومن خلال تمكين تعديل الجينات دون إحداث تغييرات دائمة في الحمض النووي( DNA) يمكن أن يكون هذا النهج الجديد مفيداً بشكل خاص في التطبيقات السريرية مثل العلاج الجيني للاضطرابات الوراثية. كما أن القدرة الفريدة لهذا النظام على عبور الحمض النووي دون إجراء قطع، أمر مثير للاهتمام لتطبيقات تحرير الجينات المتقدمة.

الدقة والسلامة

ويعتقد فريق البحث بأن هذه الطريقة يمكن أن تزوِّد العلماء وخبراء التكنولوجيا الحيوية بأدوات أكثر دقة لدراسة وظائف الجينات وتصحيح التشوهات الجينية بطريقة خاضعة للرقابة.

ويمثل الاكتشاف تقدماً كبيراً في مجال البحث الجيني؛ حيث يفتح نظام «كريسبر» من النوع «IV-A» آفاقاً جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي، ويمكن أن تحدث هذه الطريقة ثورةً في كيفية دراسة الأمراض الوراثية وعلاجها، مع التركيز على الدقة والسلامة.