«اليابان» اسم لعنصر ذري اكتشف في آسيا

يحمل رقم 113 ويشير لعدد البروتونات داخل النواة

«اليابان» اسم لعنصر ذري اكتشف في آسيا
TT

«اليابان» اسم لعنصر ذري اكتشف في آسيا

«اليابان» اسم لعنصر ذري اكتشف في آسيا

أطلق علماء يابانيون اسم «نيهونيوم»، وهو اسم بلادهم باللغة اليابانية على العنصر 113 وهو أول عنصر ذري يكتشف في آسيا وهو أيضًا الأول من نوعه الذي يعثر عليه خارج أوروبا والولايات المتحدة.
وقال الأستاذ الجامعي كوسوكي موريتا الذي قاد فريق الكشف من مركز ريكن نيشينا للعلوم: «أعتقد أن حقيقة عثورنا في اليابان على واحد من 118 عنصرًا ذريًا معروفًا يضفي معنى كبيرًا لهذا الاكتشاف». وقال: «معنى آخر هام هو أنه حتى الآن جميع العناصر بالجدول الدوري تم اكتشافها في أوروبا والولايات المتحدة».
وأضاف: «لم يعثر على أي عنصر ذري في آسيا أو أوقيانوسيا أو أفريقيا». وعثر على العنصر 113 في 2004 ويشير الرقم إلى رقمه الذري أو عدد البروتونات داخل نواة الذرة. وهو عنصر غير موجود طبيعيا إنما يتم تركيبه. ورغم أن الاتحاد الدولي للكيمياء البحتة والتطبيقية اعترف بهذا العنصر في ديسمبر (كانون الأول) 2015 فإن الاتحاد لم يعلن اسمه إلا الأربعاء. وإذا أقر سيلحق بالعناصر المعلن عنها حديثا وهي موسكوفيوم للعنصر 116 وتنيسين للعنصر 117 وأوجانيسون للعنصر 118.
ولن يكون هذا أول عنصر يشتق اسمه من اسم بلد إذ سبقه العنصران بولونيوم وفرانسيوم اللذان اشتقا اسميهما من اسم المنطقتين اللتين اكتشفا بهما.



الذكاء الصناعي يقرأ الأفكار وينصّها

فك تشفير إعادة بناء الكلام باستخدام بيانات مسح الرنين المغناطيسي (جامعة تكساس)
فك تشفير إعادة بناء الكلام باستخدام بيانات مسح الرنين المغناطيسي (جامعة تكساس)
TT

الذكاء الصناعي يقرأ الأفكار وينصّها

فك تشفير إعادة بناء الكلام باستخدام بيانات مسح الرنين المغناطيسي (جامعة تكساس)
فك تشفير إعادة بناء الكلام باستخدام بيانات مسح الرنين المغناطيسي (جامعة تكساس)

طُوّر جهاز فك ترميز يعتمد على الذكاء الصناعي، قادر على ترجمة نشاط الدماغ إلى نص متدفق باستمرار، في اختراق يتيح قراءة أفكار المرء بطريقة غير جراحية، وذلك للمرة الأولى على الإطلاق، حسب صحيفة «الغارديان» البريطانية.
وبمقدور جهاز فك الترميز إعادة بناء الكلام بمستوى هائل من الدقة، أثناء استماع الأشخاص لقصة ما - أو حتى تخيلها في صمت - وذلك بالاعتماد فقط على مسح البيانات بالتصوير بالرنين المغناطيسي الوظيفي فقط.
وجدير بالذكر أن أنظمة فك ترميز اللغة السابقة استلزمت عمليات زراعة جراحية. ويثير هذا التطور الأخير إمكانية ابتكار سبل جديدة لاستعادة القدرة على الكلام لدى المرضى الذين يجابهون صعوبة بالغة في التواصل، جراء تعرضهم لسكتة دماغية أو مرض العصبون الحركي.
في هذا الصدد، قال الدكتور ألكسندر هوث، عالم الأعصاب الذي تولى قيادة العمل داخل جامعة تكساس في أوستن: «شعرنا بالصدمة نوعاً ما؛ لأنه أبلى بلاءً حسناً. عكفت على العمل على هذا الأمر طيلة 15 عاماً... لذلك كان الأمر صادماً ومثيراً عندما نجح أخيراً».
ويذكر أنه من المثير في هذا الإنجاز أنه يتغلب على قيود أساسية مرتبطة بالتصوير بالرنين المغناطيسي الوظيفي، وترتبط بحقيقة أنه بينما يمكن لهذه التكنولوجيا تعيين نشاط الدماغ إلى موقع معين بدقة عالية على نحو مذهل، يبقى هناك تأخير زمني كجزء أصيل من العملية، ما يجعل تتبع النشاط في الوقت الفعلي في حكم المستحيل.
ويقع هذا التأخير لأن فحوصات التصوير بالرنين المغناطيسي الوظيفي تقيس استجابة تدفق الدم لنشاط الدماغ، والتي تبلغ ذروتها وتعود إلى خط الأساس خلال قرابة 10 ثوانٍ، الأمر الذي يعني أنه حتى أقوى جهاز فحص لا يمكنه تقديم أداء أفضل من ذلك.
وتسبب هذا القيد الصعب في إعاقة القدرة على تفسير نشاط الدماغ استجابة للكلام الطبيعي؛ لأنه يقدم «مزيجاً من المعلومات» منتشراً عبر بضع ثوانٍ.
ورغم ذلك، نجحت نماذج اللغة الكبيرة - المقصود هنا نمط الذكاء الصناعي الذي يوجه «تشات جي بي تي» - في طرح سبل جديدة. وتتمتع هذه النماذج بالقدرة على تمثيل المعنى الدلالي للكلمات بالأرقام، الأمر الذي يسمح للعلماء بالنظر في أي من أنماط النشاط العصبي تتوافق مع سلاسل كلمات تحمل معنى معيناً، بدلاً من محاولة قراءة النشاط كلمة بكلمة.
وجاءت عملية التعلم مكثفة؛ إذ طُلب من ثلاثة متطوعين الاستلقاء داخل جهاز ماسح ضوئي لمدة 16 ساعة لكل منهم، والاستماع إلى مدونات صوتية. وجرى تدريب وحدة فك الترميز على مطابقة نشاط الدماغ للمعنى باستخدام نموذج لغة كبير أطلق عليه «جي بي تي - 1»، الذي يعتبر سلف «تشات جي بي تي».