كشف تقرير أخير نشره موقع «ذا سبيس ريفيو» أن روسيا بصدد بناء منشأة ليزر أرضية لإعاقة عمل الأقمار الصناعية، التي تدور في سماء الأرض. وتهدف فكرة المنشأة إلى تعمية أجهزة الاستشعار البصرية في أقمار التجسّس التابعة لدولٍ أخرى، عبر «إغراقها» بضوء الليزر.
ليزرات مطورة
تشهد تقنية الليزر تطوّراً هائلاً، إلى درجة أصبح فيها هذا الدفاع المضاد للأقمار الصناعية ممكناً. ولكن إذا نجحت روسيا ببناء هذه المنشأة، فإنها ستصبح قادرة على حجب مساحة كبيرة من البلاد عن الأقمار الصناعية المزوّدة بأجهزة استشعار بصرية، فضلاً عن أنّها ستفتح الباب لمزيد من الاحتمالات المشؤومة لصناعة أسلحة ليزر قادرة على تعطيل الأقمار الصناعية بشكلٍ دائم وكامل.
• كيف يعمل الليزر؟ الليزر هو جهاز ينبعث منه شعاع ضيّق من الطاقة الموجّهة. وقد طُوّر أول جهاز ليزر عام 1960. وظهرت منذ ذلك الوقت أنواع عدّة تستخدم نفس الآليات الفيزيائية لتوليد الفوتونات أو «جسيمات» الضوء.
يضخّ الليزر الغازي كميات كبيرة من الطاقة في جزيئات محدّدة، مثل ثاني أكسيد الكربون، بينما يستمدّ الليزر الكيميائي طاقته من تفاعلات كيميائية محدّدة تطلق الطاقة. بدوره، يستخدم ليزر الحالة الصلبة مواد بلّورية مخصّصة لتحويل الطاقة الكهربائية إلى فوتونات. ولكن في جميع أنواع الليزر، تشهد الفوتونات تضخيماً لاحقاً من خلال تمريرها عبر نوعٍ خاص من المواد المعروفة باسم «الوسط الفعّال»، لتتركّز بعدها في شعاع متماسك بواسطة موجّه شعاعي.
• تأثيرات الليزر. يستطيع شعاع الطاقة الناتجة عن الليزر توليد مجموعة متنوعة من التأثيرات حسب كثافة وطول موجة الفوتون. فإذا كانت الفوتونات موجودة في الجزء المرئي من الطيف مثلاً، يستطيع الليزر توصيل الضوء المرئي إلى هدفه. يستطيع الليزر أيضاً تسخين وتبخير وإذابة، وحتى حرق، المواد الموجودة في الهدف عندما يتمكن من تحقيق تدفّق عالٍ وكافٍ من الفوتونات عالية الطاقة. تعتمد القدرة على إنتاج هذه التأثيرات على مستوى قوّة الليزر، والمسافة الفاصلة بينه وبين هدفه، والقدرة على تركيز الشعاع على الهدف.
تطبيقات الليزر
تتجلّى التأثيرات المتنوّعة لليزر في تطبيقات واسعة الانتشار في حياتنا اليومية، أبرزها مؤشرات الليزر اليدوية، وآلات الطباعة، ومشغّلات قرص الفيديو الرقمي، وتوظيفه في الإجراءات الجراحية في شبكية العين وغيرها من الأعضاء، بالإضافة إلى العمليات الصناعية والتصنيعية كالقصّ والتلحيم. ويسعى الباحثون اليوم لتطوير أضواء ليزر تحلّ محلّ تقنية موجات الراديو في تقوية الاتصالات بين السفن الفضائية والأرض.
يبرز الليزر في تطبيقات عدّة في المجال العسكري أيضاً، أبرزها سلاح الليزر المحمول المثبّت في الطائرات، الذي كان ينوي الجيش الأميركي استخدامه للتصدّي للصواريخ الباليستية. يتألّف السلاح من ليزر كبير جداً، وعالي الطاقة، مثبّت في طائرة «بوينغ 747». ولكنّ البرنامج أُلغي بسبب التحدّيات التي ترافق التنظيم الحراري وصيانة الليزر الكيميائي.
ساهم الأداء المتقدّم لليزر الحالة الصلبة في ابتكار تطبيقات عسكرية جديدة، حيث عمد الجيش الأميركي إلى تثبيت أجهزة ليزر على الشاحنات العسكرية وسفن القوات البحرية للدفاع عن نفسها في وجه الأهداف صغيرة الحجم كطائرات «الدرون» وقذائف «الهاون». تدرس القوات الجويّة بدورها استخدام الليزر لأهداف دفاعية وهجومية على الطائرات.
ليزر روسي
تحمل منشأة «الليزر» الروسية الناشئة اسم «كالينا» Kalina، وتهدف إلى تشتيت وتعمية أجهزة الاستشعار البصرية المزروعة في الأقمار الصناعية التي تجمع البيانات الاستخبارية من الفضاء. يعمل التشتيت على صدّ أجهزة الاستشعار البصرية بقدرٍ كافٍ من الشعاع لتعطيلها. ولكنّ هذه المهمّة ليست سهلة نظراً لبعد المسافات، وضرورة مرور شعاع الليزر عبر غلاف الأرض الجوي أولاً.
لا يُعدّ تسليط الليزر بشكلٍ دقيق فوق مساحات كبيرة في الفضاء بالأمر الجديد. فقد وضعت مهمّة «أبولو 15» التي أرسلتها لـ«ناسا» عام 1971 عاكسات بعرض مترٍ واحد على القمر استهدفتها أجهزة ليزر موضوعة على الأرض لتأمين معلومات عن التموضع. ولكنّ توصيل الفوتونات الكافية لمسافات بعيدة يعتمد على قوّة الليزر ونظامه البصري.
تنتج منشأة «كالينا» أشعة فوق حمراء نابضة بمعدّل ألف جول في السنتيمتر المربّع الواحد، بينما يستهلك الليزر النابض الذي يُستخدم في جراحات شبكية العين نحو 1 - 10000 من هذه الطاقة. وتنشر منشأة «كالينا» جزءاً كبيراً من الفوتونات التي تولّدها على امتداد المساحات الواسعة التي تغطيها مراقبة الأقمار الصناعية، وذلك لأنّ الليزر يوصل أشعّته بموازاة عالية، ما يعني أنّ الفوتونات تسافر باتجاه موازٍ لضمان عدم توسّع رقعة انتشار الشعاع. تركّز «كالينا» شعاعها باستخدام تلسكوب لا يتعدّى قطره بضعة أمتار.
تعمل الأقمار الصناعية التجسسية التي تستخدم أجهزة استشعار بصرية في مدار الأرض المنخفض على ارتفاع بعض مئات الكيلومترات، وتحتاج غالباً إلى بضع دقائق فقط للمرور فوق نقطة معيّنة على سطح الأرض، ما يتطلّب من «كالينا» عملاً متواصلاً، ولفترات طويلة، مع المحافظة على رصدٍ مستمرّ لأجهزة الاستشعار البصرية بمساعدة نظام التلسكوب.
تشير المعلومات المرسلة من التلسكوب إلى أنّ «كالينا» ستكون قادرة على استهداف قمر صناعي يحوم في الفضاء في مسار يمتدّ لمئات الكيلومترات، الأمر الذي سيسمح بحجب منطقة كبيرة جداً (بمساحة تقريبية تصل إلى 100 ألف كيلومتر مربّع) عن المهمّة الاستخبارية الموكلة لأجهزة الاستشعار البصرية في الأقمار الصناعية.
يدّعي الروس أنهم وظّفوا نظام ليزر مشتِّتاً أقلّ قوّة على ظهر شاحنة، عام 2019، سموه «بيريسفيت» (Peresvet)، دون التصريح بأي معلومات عن نتائج عمله.
من المتوقّع أن نشهد تزايداً في قوّة الليزر إلى درجة تتجاوز تأثير التشتيت الحالي إلى إحداث ضرر دائم في أدوات التصوير في أجهزة الاستشعار. يستوجب تقدّم تقنية الليزر في هذا الاتجاه دراسة مسائل سياسية مهمّة، لا سيما أن تدمير جهاز استشعار مثبّت في الفضاء تابع لدولة معيّنة يمكن أن يوضع في خانة النشاطات العدائية التي تؤدّي إلى تفاقم سريع للتوتر.
ليزر فضائي
ولكنّ الخوف الأكبر يترتّب على التوظيف المحتمل لأسلحة الليزر في الفضاء البعيد، لا سيما إذا تعزّزت فعالية هذه الأنظمة، في ظل تقلّص المسافات نحو الهدف، وغياب الغلاف الجوي الذي يضعف الشعاع عادة. علاوة على ذلك، تحتاج أجهزة الليزر المثبتة في الفضاء إلى قوّة أقلّ للتسبب بضرر كبير في المركبة الفضائية مقارنة بالأنظمة العاملة من على سطح الأرض. يمكن أيضاً استخدام الليزر في الفضاء لاستهداف أي قمر صناعي، من خلال تصويبه على خزّانات دافعة وأنظمة طاقة، ما قد يعطّل عمله بالكامل. ومع استمرار تطوّر هذه التقنية، ترتفع أرجحية استخدام أسلحة الليزر في الفضاء، وهنا تطرح التساؤلات حول العواقب المستقبلية لها.
* أستاذ في هندسة الطيران
والفضاء الجوي في جامعة
كولورادو الأميركية
«فاست كومباني»، خدمات «تريبيون ميديا»