إنزيم جديد يتربع على عرش «آكلي البلاستيك»

يتناول 90 % من وجبته في 16 ساعة

د. كريستيان زونينديكر وفريقه اكتشفوا إنزيماً يكسر بلاستيك «البولي إيثيلين تيريفثالات» بسرعة قياسية (جامعة لايبزيغ)
د. كريستيان زونينديكر وفريقه اكتشفوا إنزيماً يكسر بلاستيك «البولي إيثيلين تيريفثالات» بسرعة قياسية (جامعة لايبزيغ)
TT

إنزيم جديد يتربع على عرش «آكلي البلاستيك»

د. كريستيان زونينديكر وفريقه اكتشفوا إنزيماً يكسر بلاستيك «البولي إيثيلين تيريفثالات» بسرعة قياسية (جامعة لايبزيغ)
د. كريستيان زونينديكر وفريقه اكتشفوا إنزيماً يكسر بلاستيك «البولي إيثيلين تيريفثالات» بسرعة قياسية (جامعة لايبزيغ)

الزجاجات البلاستيكية، الأغلفة، والعبوات خفيفة الوزن المصنوعة من بلاستيك «البولي إيثيلين تيريفثالات»، والمعروف اختصاراً باسم «PET»، تصبح مشكلة إذا لم تتم إعادة تدويرها. وقد اكتشف علماء بجامعة لايبزيغ بألمانيا، إنزيماً عالي الكفاءة يسمى (PHL7) يعمل على تحطيم هذا البلاستيك في وقت قياسي، وجدوه في كومة السماد في لايبزيغ، ويمكن أن يعيد التدوير البيولوجي للبلاستيك بشكل أسرع بكثير مما كان يُعتقد سابقاً، وتم نشر النتائج في 18 مايو (أيار) 2022، بالعدد الأخير من المجلة العلمية «ChemSusChem».
وتلعب الإنزيمات في الطبيعة دوراً في تحلل أجزاء النبات بواسطة البكتيريا، ومعروف أن بعض الإنزيمات التي تسمى «هيدروليسات شطر البوليستر»، يمكنها أيضاً أن تتحلل من بلاستيك «البولي إيثيلين تيرفثالات»، فعلى سبيل المثال، يعتبر إنزيم (LCC) الذي تم اكتشافه في اليابان عام 2012، من «أكلة البلاستيك» الفعالة بشكل خاص.
ويبحث الفريق البحثي بقيادة الدكتور كريستيان زونينديكر، وهو باحث مهني من جامعة لايبزيغ، عن أمثلة غير مكتشفة سابقاً لهؤلاء المساعدين البيولوجيين كجزء من المشروعات الممولة من الاتحاد الأوروبي، ووجد ما كانوا يبحثون عنه في مقبرة الجنوب (Südfriedhof) في لايبزيغ بألمانيا، داخل عينة من كومة السماد، ووجدوا أن الإنزيم الجديد أدى إلى تحلل «البولي إيثيلين تيرفثالات» بسرعة قياسية في المختبر.
وكان الباحثون من معهد الكيمياء التحليلية بجامعة لايبزيغ، قد عثروا على 7 إنزيمات مختلفة ودرسوها، غير أن المرشح السابع، المسمى (PHL7)، حقق نتائج في المختبر كانت أعلى بكثير من المتوسط.
وفي التجارب، أضاف الباحثون «البولي إيثيلين تيرفثالات» إلى حاويات تحتوي على محلول مائي يحتوي إما على إنزيم (PHL7) أو إنزيم (LCC)، ثم قاموا بقياس كمية البلاستيك التي تدهورت في فترة زمنية معينة، وقارنوا القيم بعضها مع بعض.
في غضون 16 ساعة، تسبب الإنزيم الجديد (PHL7) في تحلل «البولي إيثيلين تيرفثالات» بنسبة 90 في المائة، في الوقت نفسه، حقق الإنزيم المنافس (LCC) نسبة 45 في المائة فقط. يقول زونينديكر في تقرير نشره الموقع الإلكتروني لـ«لايبزيغ» بالتزامن مع الدراسة: «الإنزيم الخاص بنا يكون نشطاً مرتين مثل المنافس، وعلى سبيل المثال، قام بتفكيك وعاء بلاستيكي، وهو النوع المستخدم لبيع العنب في محلات السوبر ماركت، في أقل من 24 ساعة».
وتتميز إعادة التدوير البيولوجي باستخدام الإنزيم الجديد ببعض المزايا، مقارنة بطرق إعادة التدوير التقليدية، والتي تعتمد بشكل أساسي على العمليات الحرارية؛ حيث تتم إذابة النفايات البلاستيكية في درجات حرارة عالية.
وهذه العمليات كثيفة الاستهلاك للطاقة، وتسبب انخفاضاً في جودة البلاستيك مع كل دورة إعادة تدوير، ومن ناحية أخرى، تتطلب الإنزيمات بيئة مائية فقط ودرجة حرارة من 65 إلى 70 درجة مئوية لعملها.
وهناك ميزة أخرى وهي أنها تقوم بتفكيك «البولي إيثيلين تيرفثالات» إلى مكوناتها من حمض التريفثاليك والإيثيلين غلايكول، والتي يمكن إعادة استخدامها لإنتاج المادة نفسها من جديد، مما يؤدي إلى دورة مغلقة. وحتى الآن، لم يتم اختبار إعادة التدوير البيولوجي لـ«البولي إيثيلين تيرفثالات» إلا بواسطة مصنع تجريبي في فرنسا.
يقول البروفسور وولفجانغ زيمرمان الذي لعب دوراً رئيسياً في إنشاء نشاط بحثي في التقنيات القائمة على الإنزيم في لايبزيغ: «يمكن للإنزيم المكتشف في لايبزيغ أن يقدم مساهمة مهمة في إنشاء عمليات إعادة تدوير بلاستيكية بديلة موفرة للطاقة».
ونظراً للمشكلات الهائلة الناجمة عن العبء العالمي للنفايات البلاستيكية على البيئة، أصبح من المهم بشكل متزايد إيجاد طرق صديقة للبيئة لإعادة استخدام البلاستيك في اقتصاد دائري مستدام، وقد ثبت أن المحفز الحيوي الذي تم تطويره الآن في لايبزيغ فعال للغاية في التحلل السريع لأغلفة «البولي إيثيلين تيريفثالات» في عملية إعادة التدوير الصديقة للبيئة؛ حيث يمكن إنتاج بلاستيك جديد من منتجات التحلل.
ويأمل الباحثون من لايبزيغ أن يتمكن الإنزيم المكتشف حديثاً من تعزيز إعادة التدوير البيولوجي في الممارسة، ويبحثون عن شركاء صناعيين لهذا الغرض، فهم مقتنعون بأن السرعة الأعلى ستقلل بشكل كبير من تكاليف إعادة التدوير.
وعلى مدى السنتين إلى الثلاث سنوات القادمة، يهدفون إلى إنشاء نموذج أولي يجعل من الممكن تحديد الفوائد الاقتصادية لعملية إعادة التدوير البيولوجي السريعة بشكل أكثر دقة.



«طلاء شمسي» لشحن السيارات الكهربائية

«طلاء شمسي» لشحن السيارات الكهربائية
TT

«طلاء شمسي» لشحن السيارات الكهربائية

«طلاء شمسي» لشحن السيارات الكهربائية

في المستقبل، يمكن تغطية سيارتك الكهربائية بألواح شمسية -ليس فقط على السطح، ولكن في جميع أنحاء الجزء الخارجي من السيارة- بفضل طلاء خاص.

وسواء كنت تقود السيارة أو كانت متوقفة، يمكن لهذا الطلاء الشمسي حصاد الطاقة من الشمس، وتغذيتها مباشرة في بطارية السيارة الكهربائية. وربما يبدو الأمر وكأنه شيء من كتاب خيال علمي، إلا أن الباحثين في شركة «مرسيدس بنز» يعملون بالفعل على جعله حقيقة واقعة.

عجينة لطلاء شمسي

يقول يوشين شميد، المدير الأول لشركة «مستقبل القيادة الكهربائية» Future Electric Drive، للبحث والتطوير في «مرسيدس بنز» الذي يستكشف تقنيات السيارات الكهربائية في مرحلة مبكرة: «نحن ننتج مئات السيارات يومياً، وسطح السيارة مساحة كبيرة جداً. فلماذا لا نستخدمها لحصاد طاقة الشمس؟».

إن المادة الكهروضوئية التي تبحثها شركة مرسيدس تشبه العجينة التي يمكن وضعها على الجزء الخارجي للسيارة. يبلغ سمك الطلاء 5 ميكرومترات فقط (يبلغ متوسط ​​سمك شعرة الإنسان نحو 100 ميكرومتر)، ويزن 50 غراماً لكل متر مربع.

وقود شمسي لآلاف الكيلومترات

في سيارة رياضية متعددة الأغراض SUV متوسطة الحجم، ستشغل العجينة، التي تطلق عليها مرسيدس أيضاً طلاءً شمسياً، نحو 118 قدماً مربعة، ما ينتج طاقة كافية للسفر لمسافة تصل إلى 7456 ميلاً (12000 كم) في السنة. ويشير صانع السيارة إلى أن هذا يمكن أن يتحقق في «ظروف مثالية»؛ وتعتمد كمية الطاقة التي ستحصدها هذه العجينة بالفعل على قوة الشمس وكمية الظل الموجودة.

طلاء مرن لصبغ المنحنيات

ولأن الطلاء الشمسي مرن، فيمكنه أن يتناسب مع المنحنيات، ما يوفر فرصاً أكبر للطاقة الشمسية مقارنة بالألواح الشمسية الزجاجية التي لا يمكن ثنيها، وبالتالي لا يمكن تثبيتها إلا على سقف السيارة أو غطاء المحرك. يُعدّ الطلاء الشمسي جزءاً من طلاء متعدد الخطوات يتضمن المادة الموصلة والعزل والمادة النشطة للطاقة الشمسية ثم الطلاء العلوي لتوفير اللون (يشكل كل ذلك معاً عمق بـ5 ميكرونات).

لن تكون هذه الطبقة العلوية طلاءً قياسياً للسيارات لأنها لا تحتوي على صبغة. بدلاً من ذلك، ستبدو هذه الطبقة أشبه بجناح الفراشة، كما يقول شميد، وستكون مادة شديدة الشفافية مليئة بجسيمات نانوية تعكس الأطوال الموجية من ضوء الشمس. كما يمكن تصميمها لتعكس أطوال موجية محددة، ما يعني أن السيارات الكهربائية يمكن أن تأتي بألوان أخرى.

وسيتم توصيل الطلاء الشمسي أيضاً عن طريق الأسلاك بمحول طاقة يقع بجوار البطارية، الذي سيغذي مباشرة تلك البطارية ذات الجهد العالي.

تأمين أكثر من نصف الوقود

ووفقاً للشركة فإن متوسط سير ​​السائق هو 32 ميلاً (51.5 كم) في اليوم؛ هناك، يمكن تغطية نحو 62 في المائة من هذه الحاجة بالطاقة الشمسية من خلال هذه التكنولوجيا. بالنسبة للسائقين في أماكن مثل لوس أنجليس، يمكن أن يغطي الطلاء الشمسي 100 في المائة من احتياجات القيادة الخاصة بهم. يمكن بعد ذلك استخدام أي طاقة إضافية عبر الشحن ثنائي الاتجاه لتشغيل منزل شخص ما.

على عكس الألواح الشمسية النموذجية، لا يحتوي هذا الطلاء الشمسي على أي معادن أرضية نادرة أو سيليكون أو مواد سامة أخرى. وهذا يجعل إعادة التدوير أسهل. وتبحث «مرسيدس» بالفعل عن كيفية جعل إصلاحه سهلاً وبأسعار معقولة.

يقول شميد: «قد تكون هناك مخاوف من أن سيارتي بها خدش، فمن المحتمل أن لوحة الباب معطلة»، وتابع: «لذا اتخذنا احتياطاتنا، ويمكننا بسهولة القول إن لدينا تدابير مضادة لذلك».

ومع تغطية المركبات الكهربائية بالطلاء الشمسي، لن يكون هناك الكثير من القلق بشأن شبكات الشحن، أو الحاجة إلى قيام الناس بتثبيت أجهزة الشحن في منازلهم. ويقول شميد : «إذا كان من الممكن توليد 50 في المائة أو حتى أكثر من قيادتك السنوية من الشمس مجاناً، فهذه ميزة ضخمة ويمكن أن تساعد في اختراق السوق».

ومع ذلك، فإن حقيقة طلاء سيارتك الكهربائية بالطاقة الشمسية لا تزال على بعد سنوات، ولا تستطيع مرسيدس أن تقول متى قد يتم طرح هذا على طرازاتها، لكنها شركة واثقة من تحقيقها.

* مجلة «فاست كومباني»، خدمات «تريبيون ميديا».

اقرأ أيضاً