تقنية مجهرية متطورة لتتبّع تسلسل الحمض النووي والبروتينات داخل الخلية الحية

نجحت في التعرف على أسباب حدوث مرض الشيخوخة المبكرة

تقنية مجهرية متطورة نجحت في التعرف على اسباب متلازمة الشيخوخة المبكرة
تقنية مجهرية متطورة نجحت في التعرف على اسباب متلازمة الشيخوخة المبكرة
TT

تقنية مجهرية متطورة لتتبّع تسلسل الحمض النووي والبروتينات داخل الخلية الحية

تقنية مجهرية متطورة نجحت في التعرف على اسباب متلازمة الشيخوخة المبكرة
تقنية مجهرية متطورة نجحت في التعرف على اسباب متلازمة الشيخوخة المبكرة

أظهرت تقنية مجهرية متطورة أنها أداة قوية يمكنها تتبّع تسلسل الحمض النووي «دي إن إيه»، وتحديد مواقع البروتينات داخل الخلايا السليمة في وقت واحد.

وتسمح هذه التقنية - التي طوّرها باحثون في جامعة هارفارد - للعلماء بجمع صورة مفصلة حول كيفية تفاعل الحمض النووي والبروتينات، دون الحاجة إلى كسر الخلية، وهذا مهم بشكل خاص لفهم كيفية عمل البروتينات والجينات معاً داخل النواة، وكيف تؤثر هذه التفاعلات على الوظائف الخلوية.

ترتيب الحمض النووي داخل الجينوم

إن هذا النهج قد يكون مفيداً بشكل خاص للباحثين الذين يدرسون كيف يتم لفّ الحمض النووي حول البروتينات وحشره في نُوى الخلايا، وكيف يمكن لموقع الجينات داخل هذا «الخليط» أن يؤثر على نشاطها.

ويقول جيسون بوينروسترو عالم الوراثة في جامعة هارفارد في كمبردج بولاية ماساتشوستس الأميركية، في الدراسة التي قادها، ونُشرت على موقع «bioRxiv» في 10 أكتوبر (تشرين الأول) 2024، أن الحمض النووي بوصفه سلسلة خطية من المعلومات يتعيّن تنظيمها داخل نواة خلية امتدادها 5 ميكرومترات، وعلى العلماء معرفة كيفية انطواء كل هذه المعلومات داخل النواة. وعليه قام الباحثون باستخدام إنزيم ينسخ الحمض النووي، ودمج مكونات الحمض النووي التي تحمل علامات فلورية «fluorescent tags» (الصبغة الفلورية عبارة عن مركب كيميائي مُشِعّ يمكنه إعادة إصدار الضوء عند إثارة الليزر له، للمساعدة في اكتشاف جزيء حيوي مثل البروتين، أو الأجسام المضادة، أو الأحماض الأمينية)، ومن خلال تتبّع تسلسل العلامات الفلورية تمكّنوا من تحديد ترتيب قواعد الحمض النووي في الجينوم.

تقنية مجهرية متطورة نجحت في التعرف على اسباب متلازمة الشيخوخة المبكرة

تقنية المجهر التوسّعي

عرف الباحثون منذ فترة طويلة كيفية وضع علامات على البروتينات لتتبّع مواقعها، ولكن دقة المجهر الضوئي محدودة بطول موجة الضوء، ما يجعل من الصعب التمييز بين خيوط الحمض النووي ذات العلامات الفلورية، أو البروتينات القريبة جداً بعضها من بعض، وهذا يفرض مشكلة خاصة نتيجة الحدود الضيقة للنواة.

لذا أضاف الفريق طريقة أخرى تسمى المجهر التوسعي «expansion microscopy»، وتعتمد هذه التقنية على هُلام يخترق الخلايا، ثم ينتفخ عندما يمتصّ الماء، ومع تمدُّد الهُلام فإنه يدفع الجزيئات بعيداً بعضها عن بعض، ما يجعل من السهل التمييز بين جزيء بروتين واحد وبين الآخر.

والمجهر التوسعي أو علم المجهريات التوسعي هو أسلوب في علم المجهريات، يقوم على تضخيم العينة بدلاً من استخدام المجهر مباشرةً لمعاينتها. ويتم ذلك عبر استخدام شبكة من البوليمرات القابلة للانتفاخ، وهو ما يسمح بدراسة الكيانات الصغيرة داخل بعض الخلايا التي لا يمكن رؤيتها بطرق المجهريات العادية حتى عالية الدقة منها.

مرض الشيخوخة المبكرة

ومن خلال الجمع بين الطريقتين تمكّن العلماء من تصوّر تسلسلات الحمض النووي ومواقع البروتينات بدقة عالية، وقد تم تطبيق هذا النهج بالفعل على دراسة مرض الشيخوخة المبكرة (Progeria)، وهو نوع محدّد من متلازمة الشيخوخة المبكرة، والمعروفة أيضاً باسم متلازمة «هتشينسون - غيلفورد» (Hutchinson – Gilford syndrome)، (وهو اضطراب وراثي نادر يُسرع الشيخوخة لدى الأطفال).

ووجد الباحثون أن البروتينات الطافرة التي تسمى «اللامينات» (Lamins) (هي بروتينات ليفية في شكل خيوط توفر وظيفة هيكلية، وتنظيم النسخ في نواة الخلية)، التي توجد عادةً على محيط النواة تغزو الجزء الداخلي من النواة لدى مرضى المتلازمة، وتعمل هذه «اللامينات» الطافرة على تعطيل الترتيب المعتاد للكروموسومات، وقمع نشاط الجينات، على غرار ما يحدث في الشيخوخة الطبيعية.

وتؤدي الطفرة في الجين المسمى «LMNA» إلى تراكم بروتين سام يسمى «بروجيرين» (progerin)، وهو ما يؤدي إلى مجموعة من أعراض الشيخوخة، مثل تساقط الشعر وتيبّس المفاصل، والأهم من ذلك مشاكل القلب والأوعية الدموية، مثل قصور القلب، والسكتة الدماغية، وهي الأسباب الرئيسية للوفاة لأولئك الذين يعانون من هذا المرض، حيث يبلغ متوسط العمر المتوقع لمعظم مرضى المتلازمة من 6 إلى 20 عاماً فقط.

منجم المعلومات

ويحرص العلماء في مجالات مثل أبحاث السرطان على تبنّي هذه التقنية؛ لأنها توفر رؤى غير مسبوقة حول كيفية تنظيم الحمض النووي، وكيف يؤثر تفاعله مع البروتينات على نشاط الجينات، ومع ذلك فإن الطريقة تتطلّب خبرة فنية كبيرة لتنفيذها.

ويشير بعض الخبراء، مثل كيلي روجرز، التي تدرس المجهر المتقدم في معهد والتر وإليزا هول للأبحاث الطبية في ملبورن بأستراليا، والتي لم تشارك بالدراسة، إلى أن تعقيد التقنية قد يَحُدّ في البداية من استخدامها على نطاق واسع، على الرغم من وجود إمكانية لتبسيط وتسويق البروتوكولات في المستقبل.

كما يقدم هذا النهج ثروة من المعلومات، ما قد يؤدي إلى إحداث ثورة في كيفية دراسة الباحثين لتفاعلات الحمض النووي والبروتينات في الأمراض. وهذا يفتح إمكانيات جديدة لفهم البيولوجيا الأساسية للخلايا، وخصوصاً في سياقات الشيخوخة والمرض.



صواريخ الدفع الحراري النووي لاستكشاف المريخ

رسم تصويري لصواريخ الدفع الحراري النووي
رسم تصويري لصواريخ الدفع الحراري النووي
TT

صواريخ الدفع الحراري النووي لاستكشاف المريخ

رسم تصويري لصواريخ الدفع الحراري النووي
رسم تصويري لصواريخ الدفع الحراري النووي

تطوّر وكالة «ناسا» الفضائية الأميركية تقنية بديلة للصواريخ ذات الدفع الكيميائي التي تستغرق وقتاً طويلاً للوصول إلى الكواكب الأخرى.

دفع حراري نووي

تُسمى هذه التقنية «الدفع الحراري النووي»، الذي يستخدم الانشطار النووي ويمكنه في يوم ما تزويد صاروخ بالطاقة من شأنه أن يقطع الرحلة في نصف الوقت الحالي فقط.

يشتمل الانشطار النووي على إنتاج كمية هائلة من الطاقة المنبعثة عند انقسام ذرة بواسطة نيوترون. يُعرف هذا التفاعل باسم التفاعل الانشطاري. وتقنية الانشطار معروفة في توليد الطاقة، وتسيير الغواصات النووية، وقد يؤدي تطبيقها في دفع أو تشغيل صاروخ إلى تزويد «ناسا» يوماً ما ببديل أسرع وأقوى للصواريخ التي تعمل بالطاقة الكيميائية.

وتُطور «ناسا» سوياً مع وكالة مشروعات أبحاث الدفاع المتقدمة تقنية الدفع الحراري النووي. وتُخطط الهيئتان لنشر وإثبات قدرات نظام نموذجي في الفضاء في عام 2027؛ ما يجعله من المحتمل أن يكون أحد أول النماذج التي يتم بناؤها وتشغيلها من قِبل الولايات المتحدة.

يمكن للدفع الحراري النووي يوماً ما تشغيل منصات فضائية قابلة للمناورة من شأنها حماية الأقمار الاصطناعية الأميركية في مدار الأرض وخارجها. لكن التكنولوجيا لا تزال قيد التطوير.

أنا أستاذ مشارك في الهندسة النووية في معهد جورجيا للتكنولوجيا، ومجموعة البحث خاصتي تبني نماذج ومحاكاة لتحسين وتحقيق الاستخدام الأمثل لأنظمة الدفع الحراري النووي. وأملي وشغفي المساعدة في تصميم محرك الدفع الحراري النووي الذي سينطلق في رحلة مأهولة إلى المريخ.

الدفع النووي مقابل الدفع الكيميائي

تستخدم أنظمة الدفع الكيميائي التقليدية تفاعلاً كيميائياً يتضمن وقوداً دافعاً خفيفاً، مثل الهيدروجين، مع العامل المؤكسد. وعند مزجهما معاً، يشتعل العنصران؛ ما يؤدي إلى خروج المادة الدافعة من الفوهة بسرعة كبيرة لدفع الصاروخ.

لا تتطلب هذه الأنظمة أي نوع من نظم الإشعال، وبالتالي فهي موثوقة. لكن يجب على الصواريخ حمل الأكسجين معها إلى الفضاء؛ مما قد يثقلها. وبالمقابل، تعتمد أنظمة الدفع الحراري النووي، على عكس أنظمة الدفع الكيميائي، على تفاعلات الانشطار النووي لتسخين المادة الدافعة التي تُطرد بعدها من الفوهة لإنشاء القوة الدافعة أو الدفع.

في الكثير من تفاعلات الانشطار، يرسل الباحثون نيوتروناً نحو نظير أخف من اليورانيوم، وهو «اليورانيوم - 235». يمتص اليورانيوم النيوترون؛ مما يخلق «اليورانيوم - 236». ثم ينقسم «اليورانيوم - 236» شظيتين - منتجاً الانشطار - ويُطلق التفاعل بعض الجسيمات المتنوعة.

الانشطار النووي لتوليد الطاقة

تستخدم أكثر من 400 محطة للطاقة النووية قيد التشغيل حول العالم حالياً تكنولوجيا الانشطار النووي. وأغلب هذه المفاعلات النووية العاملة هي مفاعلات الماء الخفيف. تستخدم هذه المفاعلات الانشطارية الماء لإبطاء النيوترونات ولامتصاص ونقل الحرارة. يمكن للماء توليد البخار مباشرة في قلب المفاعل أو في مولد البخار، والذي يحرك توربيناً لإنتاج الكهرباء.

تعمل أنظمة الدفع الحراري النووي بطريقة مماثلة، لكنها تستخدم وقوداً نووياً مختلفاً يحتوي على المزيد من «اليورانيوم - 235». كما أنها تعمل في درجة حرارة أعلى بكثير؛ ما يجعلها قوية للغاية ومكثفة. وتتمتع أنظمة الدفع الحراري النووي بكثافة طاقة تزيد بنحو 10 مرات على مفاعل المياه الخفيفة التقليدي.

قد يكون الدفع النووي متقدماً عن الدفع الكيميائي لأسباب عدة. إذ يطرد الدفع النووي المادة الدافعة من فوهة المحرك بسرعة كبيرة؛ ما يولد قوة دفع عالية. ويسمح هذا الدفع العالي للصاروخ بالتسارع بشكل أسرع.

كما تتميز هذه الأنظمة أيضاً بدفع نوعي عالٍ. يقيس الدفع النوعي مدى كفاءة استخدام الوقود الدافع لتوليد الدفع. وتتمتع أنظمة الدفع الحراري النووي بدفع نوعي يبلغ نحو ضعف الدفع النوعي للصواريخ الكيميائية؛ مما يعني أنها يمكن أن تقلل وقت السفر إلى النصف.

تاريخ الدفع الحراري النووي

لمدة عقود، موّلت الحكومة الأميركية تطوير تقنية الدفع الحراري النووي. بين عامي 1955 و1973، أنتجت برامج في وكالة «ناسا» وشركة «جنرال إلكتريك» ومختبرات «أرغون» الوطنية، واختبرت 20 محرك دفع حراري نووي على الأرض.

لكن هذه التصاميم التي سبقت عام 1973 اعتمدت على وقود اليورانيوم عالي التخصيب. ولم يعد هذا الوقود مُستخدماً بسبب مخاطر الانتشار النووي، أو المخاطر المتعلقة بانتشار المواد والتكنولوجيا النووية.

تهدف مبادرة الحد من التهديدات العالمية، التي أطلقتها وزارة الطاقة وإدارة الأمن النووي، إلى تحويل الكثير من المفاعلات البحثية التي تستخدم وقود اليورانيوم عالي التخصيب إلى وقود اليورانيوم عالي الكثافة منخفض التخصيب، أو وقود «الهاليو».

يحتوي وقود اليورانيوم عالي الكثافة منخفض التخصيب HALEU على كمية أقل من المواد القادرة على الخضوع لتفاعل الانشطار، مقارنة بوقود اليورانيوم عالي التخصيب. لذلك؛ يحتاج الصاروخ إلى تحميل المزيد من وقود HALEU هذا؛ ما يجعل المحرك أثقل. ولحل هذه المشكلة، يبحث الباحثون عن مواد خاصة من شأنها استخدام الوقود بشكل أكثر كفاءة في هذه المفاعلات.

يهدف «برنامج الصواريخ التجريبية للعمليات الأرض - قمرية الخفيفة» أو «دراكو» DRACO التابع لوكالة «ناسا» ووكالة مشروعات أبحاث الدفاع المتقدمة «داربا»، إلى استخدام وقود اليورانيوم عالي الكثافة منخفض التخصيب في محرك الدفع الحراري النووي الخاص به. ويخطط البرنامج لإطلاق صاروخه في عام 2027.

وكجزء من برنامج «دراكو»، تعاونت شركة «لوكهيد مارتن» للفضاء مع شركة «بي دبليو إكس تكنولوجيز» لتطوير تصميمات المفاعل والوقود.

سيتعين على محركات الدفع الحراري النووي التي تطورها هذه المجموعات الامتثال لمعايير الأداء والسلامة المحددة. كما سيتعين عليها أن يكون لديها قلب قادر على العمل طوال مدة المهمة وأداء المناورات اللازمة للرحلة السريعة إلى المريخ.

ومن الناحية المثالية، يجب أن يكون المحرك قادراً على إنتاج دفع نوعي عالٍ، مع استيفاء متطلبات الدفع العالي وكتلة المحرك المنخفضة.

بحوث متواصلة

قبل أن يتمكن المهندسون من تصميم محرك يلبي جميع هذه المعايير، يجب عليهم البدء بالنماذج والمحاكاة. وتساعد هذه النماذج الباحثين، مثل أولئك الموجودين في مجموعتي، على فهم كيفية تشغيل وإيقاف المحرك. هذه عمليات تتطلب تغييرات سريعة وهائلة في درجة الحرارة والضغط.

سيختلف محرك الدفع الحراري النووي عن جميع أنظمة الطاقة الانشطارية الحالية؛ لذلك سيحتاج المهندسون إلى إنشاء أدوات برمجية تعمل مع هذا المحرك الجديد.

يعمل فريقي على تصميم وتحليل مفاعلات الدفع الحراري النووي باستخدام النماذج. نعمل على نمذجة ومحاكاة الأنظمة المعقدة للمفاعل لمعرفة كيف يمكن لأمور مثل التغيرات في درجة الحرارة على المفاعل وسلامة الصاروخ. لكن محاكاة هذه التأثيرات يمكن أن يستغرق الكثير من قوة الحوسبة المكلفة.

لقد عملنا على تطوير أدوات حوسبة جديدة تحاكي كيفية عمل هذه المفاعلات أثناء بدء التشغيل ومباشرة التشغيل من دون استخدام الكثير من قوة الحوسبة. ونأمل أن يساعد هذا البحث يوماً ما في تطوير نماذج يمكنها التحكم في الصاروخ بشكل مستقل.

* أستاذ مشارك في الهندسة النووية والإشعاعية بمعهد جورجيا للتكنولوجيا - مجلة «فاست كومباني»

- خدمات «تريبيون ميديا»