لأول مرة: تنبؤات الذكاء الاصطناعي الدقيقة لقوة الأعاصير تتفوق على دقة النظم الكومبيوترية

إعصارا «هيلين» و«ميلتون» كانا نقطة تحول كبرى

التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
TT

لأول مرة: تنبؤات الذكاء الاصطناعي الدقيقة لقوة الأعاصير تتفوق على دقة النظم الكومبيوترية

التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها

كنت أدرس الأعاصير وأتنبأ بها وأكتب عنها لأكثر من عقدين من الزمان، منذ وقت طويل عندما كنا نرسم خرائط الطقس يدوياً، كما كتب إريك هولثاوس (*).

توقعات الذكاء الاصطناعي الدقيقة للطقس

إلا أن إعصارَي «هيلين» و«ميلتون» كانا أول إعصارين اعتمدت فيهما بشدة على توقعات الطقس التي تم إنشاؤها بواسطة الذكاء الاصطناعي. ويبدو هذا الأمر وكأنه نقطة تحول.

وفي عصرنا الحالي الذي يتسم بحالة الطوارئ المناخية المتصاعدة، تساعد الأجواء الدافئة في جعل الطقس أكثر تطرفاً وخطورة، مما يعرض مزيداً من الناس للخطر كل عام. ولذا فإن التنبؤات الأكثر ثقة بتلك الأعاصير التي ستتحول إلى وحش أو التي ستتلاشى بأمان، تمنح الناس مزيداً من الوقت للاستعداد.

تحديث تطور الأعاصير ساعة بساعة

خلال إعصاري «هيلين» و«ميلتون»، تم تطوير أداة الذكاء الاصطناعي التي استخدمتها كثيراً -AI RI- بواسطة باحثين في جامعة ويسكونسن. وهي تقدم احتمالات محدثة كل ساعة حول فرص حدوث نوبة من التكثيف السريع لسيرورة إعصار ناشئ جديد.

في مرحلة ما، كانت هذه الأداة (AI RI) تعطي فرصة بنسبة 100 في المائة تقريباً بأن «ميلتون» سيزداد قوة ليتحول من الفئة 1 إلى الفئة 5 في غضون 24 ساعة قادمة. وبالطبع، تبين أن هذا التنبؤ صحيح.

ولم يشهد أي إعصار أطلسي في 175 عاماً من تسجيلاتنا للأعاصير تعززاً في قوته، مثل إعصار «ميلتون». ولم يكن لأحد أن يتصور حدوث مثل هذا.

تنبؤات غير مسبوقة

هذا التنبؤ الدقيق حتى قبل 5 سنوات كان صعباً باستخدام نماذج الطقس الحاسوبية التقليدية.

قبل قرن واحد فقط، كان من المستحيل تقريباً وضع توقعات للظروف الجوية المعاكسة بشكل موثوق، ضمن أي نطاق زمني. ولإعطاء فكرة عن حجم التقدم، فإن التنبؤ بالطقس لمدة 4 أيام أصبح الآن دقيقاً، مثلما كان حال التنبؤ بالطقس ليوم واحد في عام 1995.

ويعِد الذكاء الاصطناعي بتمديد هذه المكاسب أياماً وأسابيع وأشهراً في المستقبل، وعلى مقاييس جغرافية أدق وأدق، حتى على مستوى المناخ المحلي والحي.

** في غضون 25 عاماً، من المتوقع أن تكلف التأثيرات الإجمالية لتغير المناخ تريليونات الدولارات سنوياً **

كلفة الكوارث الطبيعية

وحتى بعد تعديل التضخم النقدي، تكلف الكوارث الطبيعية الآن نحو 5 أضعاف ما كانت عليه في الثمانينات. ويمكن أن تمثل التقلبات الجوية اليومية ما يصل إلى 3 في المائة- 6 في المائة، من الناتج المحلي الإجمالي سنوياً. أما الفيضانات الناجمة عن هطول الأمطار الشديدة وحدها، مثل تلك التي نجمت عن «هيلين»، فتكلف الآن ما متوسطه 1 في المائة من الناتج المحلي الإجمالي للولايات المتحدة كل عام.

وفي غضون 25 عاماً، من المتوقع أن تكلف التأثيرات الإجمالية لتغير المناخ تريليونات الدولارات سنوياً.

تطبيق ذكاء اصطناعي على كومبيوتر محمول

ورداً على سؤالي: «لقد فوجئت قليلاً بأن عمليات التشغيل الروتينية لنموذج التكثيف السريع لا تتطلب أي طاقة حاسوبية على الإطلاق»، تقول سارة غريفين، الخبيرة في الأعاصير والأقمار الاصطناعية في جامعة ويسكونسن التي طورت أداة الذكاء الاصطناعي: «إنها لا تحتاج إلى أي شيء فاخر؛ إذ لا توجد حاجة إلى وحدة معالجة رسومية، وعادة ما تعمل في أقل من دقيقة».

** الذكاء الاصطناعي يغيِّر عمل خبراء الأرصاد الجوية**

قبل البداية السريعة لأدوات الذكاء الاصطناعي، تم تطوير أفضل نموذج حاسوبي للأعاصير بتكلفة 150 مليون دولار. وكان لا بد من تشغيله على أحد أسرع أجهزة الكومبيوتر في العالم.

لذا فإن حقيقة أنه يمكن تشغيل «AI RI» من الناحية النظرية، خلال بضع دقائق على جهاز كومبيوتر محمول، أشبه بالسحر. وقد ظلت إدارة الأرصاد الجوية الوطنية ومنظمتها الأم (NOAA) لسنوات، تستثمر في الذكاء الاصطناعي والتعلم الآلي لمساعدة علمائها على غربلة كميات هائلة من البيانات البيئية التي يجمعونها كل يوم.

وتؤتي هذه الاستثمارات ثمارها بالفعل، وبشكل كبير، وخصوصاً عندما يتعلق الأمر بجعل تكنولوجيا التنبؤ بالطقس أكثر فائدة للمجتمعات المحرومة والأشخاص على الخطوط الأمامية لحالة الطوارئ المناخية.

50 عاماً من نماذج الطقس الكومبيوترية

عرض الرادار من طائرة صيد الأعاصير التابعة للإدارة الوطنية للمحيطات والغلاف الجوي

منذ اختراعها قبل نحو 50 عاماً، كانت نماذج الطقس بمساعدة الكومبيوتر تُشغَّل دائماً تقريباً على أكبر أجهزة الكومبيوتر التي يستطيع العلماء تحمل تكلفتها. وذلك لأن مئات الحسابات الرياضية والفيزيائية يجب إجراؤها مراراً وتكراراً لتتبع جميع المسارات المحتملة للأمام في الوقت المناسب لكل جزء من الغلاف الجوي الذي توجد بيانات عنه، بقدر ما يمكن جمع هذه البيانات. إنها دورة لا تنتهي أبداً من الخيارات الصعبة حول كيفية تركيز قوة الحوسبة النادرة بأكبر قدر من الكفاءة، وهو صراع صعب جداً ضد قوى الطبيعة.

وهذا يعني أن التنبؤ بالطقس كان مكلفاً دائماً، كما أن عدم المساواة صارخ؛ إذ تنفق الحكومات في البلدان الأكثر ثراءً -مثل الولايات المتحدة وأوروبا- ما معدله نحو 25 دولاراً سنوياً لكل مواطن على توقعات الطقس الخاصة بها، بينما تنفق البلدان الأكثر فقراً أقل من دولار واحد سنوياً لكل مواطن، الأمر الذي يؤدي إلى انخفاض دقة التوقعات بالنسبة للأشخاص الذين من المرجح أن يشاركوا في أنشطة حساسة للطقس، مثل الزراعة أو صيد الأسماك.

الذكاء الاصطناعي يحقق المساواة المناخية العالمية

ومن أفضل جوانب الذكاء الاصطناعي قدرته على تحقيق المساواة في هذا المجال. وللتعرف على مزيد حول هذا الموضوع، تحدثت مع مايكل فيشر الباحث في مجال الأعاصير، وأستاذ الأرصاد الجوية في جامعة ميامي. وميامي هي قلب عالم التنبؤ بالأعاصير، فهي المكان الذي يوجد فيه خبراء التنبؤ بالأعاصير الرسميون التابعون للمركز الوطني للأعاصير، كما أنها موطن «صائدي الأعاصير»، وهم قسم من احتياطي القوات الجوية الأميركية الذي كان لعقود من الزمان يطير بالطائرات عبر الأعاصير لقياس موقعها وحركتها وقوتها.

تحسين مُدخلات البيانات

يركز عمل فيشر على تحسين التنبؤ بالأعاصير، وخصوصاً فائدة رادارات الطقس المحمولة جواً على طائرات صائدي الأعاصير. ويقول: «أعتقد أن الذكاء الاصطناعي يفتح كثيراً من الأبواب التي ليست ممكنة بالضرورة، على الأقل مع القدرات الحسابية الحالية؛ لأن هذه النماذج يمكن أن تعمل بسرعة كبيرة». ويضيف: «إنه يسمح لنا بالقيام بأشياء، مثل إنشاء توقعات عالية الدقة للمناطق المحلية، ونأمل أن يساعد ذلك في إنقاذ الأرواح، إضافة إلى جوانب أخرى مثل موجات الحر والطقس المتطرف والأمطار الغزيرة».

إنني كبير السن بما يكفي لأتذكر عندما كنت طالباً جامعياً في عام 2000 عندما بدأت نماذج الطقس الحاسوبية المبكرة في التفوق بشكل موثوق على مهارة المتنبئين البشريين. ومع ذلك، لم يثق أساتذتي بها، وبدلاً من ذلك كانوا يعلموننا صفحات من «القواعد الأساسية» و«الحيل البسيطة» لتقدير التوقعات بناءً على التعرف على الأنماط في خرائط الطقس.

لكن هناك شيئاً واحداً قالوه عن بناء نموذج طقس حاسوبي جدير بالاهتمام ظل عالقاً في ذهني حقاً: «القمامة تدخل، والقمامة تخرج». وهذا يعني أن توقعات الكومبيوتر الخاصة بك لا تكون جيدة إلا بقدر البيانات التي تبدأ بها. وهذا هو هدف مشروع تحسين توقعات الأعاصير الذي أطلقه فيشر، لاستخدام التعلم الآلي لمراقبة جودة البيانات المتدفقة من صائدي الأعاصير أثناء طيرانهم.

يقول فيشر إن الأمر يستغرق من عالم الأرصاد الجوية المدرب نحو أسبوعين لتصفية «الضوضاء» يدوياً من رادار الطائرة. يمكن لنموذج الذكاء الاصطناعي الخاص به القيام بذلك في دقائق، بينما لا تزال الطائرة في الهواء، بحيث يمكن بعد ذلك إرسال البيانات في الوقت الفعلي إلى نماذج الطقس للتوصل إلى توقعات.

نماذج طقس حكومية وخاصة

واليوم، بالطبع، ليست هيئة الأرصاد الجوية الوطنية هي الوحيدة التي تستثمر في تحسين نماذج الطقس باستخدام الذكاء الاصطناعي، فكل الأسماء الكبيرة في مجال الذكاء الاصطناعي تفعل ذلك أيضاً.

تمتلك «غوغل» GraphCast، بينما تمتلك «نيفيديا» FourCastNet. وتعِدُ الشركات الناشئة –مثل «precip.ai» و«atmo.ai»- عملاءها بتحليلات الطقس المحلية والدقيقة للغاية لجميع أنواع الاستخدامات. وتجعل «غوغل» أحدث نموذج للطقس المعزز بالذكاء الاصطناعي مفتوح المصدر. قد يكون التنبؤ بالطقس نقطة مضيئة نادرة في مجال الذكاء الاصطناعي؛ خصوصاً مع زيادة الحاجة بسبب تصاعد مخاطر المناخ.

تستخدم هيئة الأرصاد الجوية الوطنية الذكاء الاصطناعي في خدمة ترجمة لغة جديدة لنشرات الطقس، لجعل التوقعات في متناول الجميع بحيث لا تقتصر على اللغة الإنجليزية فقط.

مخاوف تحيّز الذكاء الاصطناعي

إلا أن فيشر يشعر ببعض المخاوف المألوفة، وخصوصاً بشأن التحيز الذي قد يقدمه فريقه أثناء تدريبهم للذكاء الاصطناعي؛ لكنه يعتقد في الوقت الحالي أن الأداة يمكن استخدامها بشكل متوازن.

وتمنح مشاركة شركات التكنولوجيا الكبرى فيشر الأمل في أن روح التعاون هذه في مواجهة حالة الطوارئ المناخية قد تستمر. ويقول: «إذا كان هدفنا الرئيسي هو محاولة المساعدة في إنقاذ الأرواح وحماية الممتلكات، فأعتقد أن العمل معاً بوصفنا مجتمعاً علمياً هو أفضل طريقة للقيام بذلك»،

* مجلة «فاست كومباني»، خدمات «تريبيون ميديا».


مقالات ذات صلة

المدير التنفيذي لـ«سيسكو» السعودية: استثماراتنا بالمملكة مستمرة لدعم جهودها في التحول الرقمي

الاقتصاد المدير التنفيذي لشركة «سيسكو السعودية» سلمان فقيه (تصوير: تركي العقيلي) play-circle 01:37

المدير التنفيذي لـ«سيسكو» السعودية: استثماراتنا بالمملكة مستمرة لدعم جهودها في التحول الرقمي

في ظل ما يشهده قطاع التقنية السعودي من تطور، حقَّقت «سيسكو» أداءً قوياً ومتسقاً مع الفرص المتاحة وقرَّرت مواصلة استثماراتها لدعم جهود السعودية في التحول الرقمي.

زينب علي (الرياض)
تكنولوجيا شركات الذكاء الاصطناعي تتفق مع دور النشر بما يتيح لهذه الشركات استخدام الأعمال المنشورة لتدريب نماذجها القائمة على الذكاء الاصطناعي التوليدي (رويترز)

شركات الذكاء الاصطناعي التوليدي تلجأ إلى الكتب لتطوّر برامجها

مع ازدياد احتياجات الذكاء الاصطناعي التوليدي، بدأت أوساط قطاع النشر هي الأخرى في التفاوض مع المنصات التي توفر هذه التقنية سعياً إلى حماية حقوق المؤلفين.

«الشرق الأوسط» (باريس)
الاقتصاد بورصة نيويورك للأوراق المالية (وكالة حماية البيئة)

هيمنة الأسهم الأميركية تزداد قوة مع فوز ترمب

تواصل الأسهم الأميركية تعزيز تفوقها على منافسيها العالميين، ويعتقد العديد من المستثمرين أن هذه الهيمنة قد تزداد إذا تمكن دونالد ترمب من تنفيذ برنامجه.

«الشرق الأوسط» (نيويورك)
تكنولوجيا يستعرض مؤتمر «مايكروسوفت إغنايت 2024» أبرز تقنيات الذكاء الاصطناعي المقبلة

مؤتمر «مايكروسوفت إغنايت 2024» يكشف عن أبرز نزعات الذكاء الاصطناعي المقبلة

إطلاق أكبر مشروع للأمن الرقمي بتاريخ البشرية لمواجهة أكثر من 7000 هجمة في الثانية.

خلدون غسان سعيد (جدة)
الاقتصاد علم شركة «إنفيديا» على الحرم الجامعي في سانتا كلارا بكاليفورنيا (إ.ب.أ)

بالأرقام... كيف أصبحت «إنفيديا» الشركة الأكثر قيمة في العالم؟

حققت «إنفيديا» مرة أخرى نتائج ربع سنوية تجاوزت توقعات «وول ستريت».

«الشرق الأوسط» (نيويورك)

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية
TT

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«تخيل أنك بحاجة إلى إجراء عملية جراحية في غضون بضع دقائق لأنك قد لا تنجو... لا يوجد جراحون في الجوار ولكن يوجد روبوت جراحي مستقل متاح يمكنه إجراء هذا الإجراء باحتمالية عالية جداً للنجاح، هل ستغتنم الفرصة؟» هذا ما أجابني به طالب ما بعد الدكتوراه بجامعة جونز هوبكنز عبر البريد الإلكتروني، لدى سؤالي عن التطوير الجديد.

تعليم الروبوت بمقاطع فيديو للجراحة

لأول مرة في التاريخ، تمكن كيم وزملاؤه من تعليم الذكاء الاصطناعي استخدام آلة جراحة آلية لأداء مهام جراحية دقيقة، من خلال جعلها تشاهد آلاف الساعات من الإجراءات الفعلية التي تحدث في ردهات جراحية حقيقية. ويقول فريق البحث إنه تطور رائد يتجاوز حدوداً طبية محددة ويفتح الطريق لعصر جديد في الرعاية الصحية.

وفقاً لورقتهم البحثية المنشورة حديثاً، يقول الباحثون إن الذكاء الاصطناعي تمكن من تحقيق مستوى أداء مماثل لجراحي البشر دون برمجة مسبقة.

جراحة بتوظيف الروبوت

تدريب على العروض بدلاً من البرمجة

وبدلاً من محاولة برمجة الروبوت بشق الأنفس للعمل -وهو ما تقول ورقة البحث إنه فشل دائماً في الماضي- قاموا بتدريب هذا الذكاء الاصطناعي من خلال شيء يسمى التعلم بالتقليد، وهو فرع من الذكاء الاصطناعي حيث تراقب الآلة وتكرر الأفعال البشرية. سمح هذا للذكاء الاصطناعي بتعلم التسلسلات المعقدة للأفعال المطلوبة لإكمال المهام الجراحية عن طريق تقسيمها إلى مكونات حركية. وتترجم هذه المكونات إلى أفعال أبسط -مثل زوايا المفاصل ومواضعها ومساراتها- والتي يسهل فهمها وتكرارها وتكييفها أثناء الجراحة.

توظيف روبوت «دافنشي» للتدريب

استخدم كيم وزملاؤه نظام دافنشي الجراحي كأيدٍ وعيون لهذا الذكاء الاصطناعي. ولكن قبل استخدام المنصة الروبوتية الراسخة (التي يستخدمها الجراحون حالياً لإجراء عمليات دقيقة محلياً وعن بُعد) لإثبات نجاح الذكاء الاصطناعي الجديد، قاموا أيضاً بتشغيل محاكاة افتراضية. وقد سمح هذا بتكرار أسرع وتحقق من السلامة قبل تطبيق الإجراءات التي تم تعلمها على الأجهزة الفعلية.

«كل ما نحتاجه هو إدخال الصورة، ثم يجد نظام الذكاء الاصطناعي هذا الإجراء الصحيح»، كما يقول كيم. كانت روبوتات دافنشي أيضاً مصدر مقاطع الفيديو التي حللها الذكاء الاصطناعي، باستخدام أكثر من 10000 تسجيل تم التقاطها بواسطة كاميرات المعصم أثناء العمليات الجراحية التي يقودها الإنسان.

تعلّم 3 مهام جراحية

وكان الهدف تعلم ثلاث مهام جراحية: التعامل مع إبرة جراحية وتحديد موضعها، ورفع الأنسجة والتلاعب بها بعناية، والخياطة -كلها مهام معقدة تتطلب تحكماً دقيقاً وحساساً للغاية.

مكنت مجموعة البيانات واسعة النطاق هذه الذكاء الاصطناعي من تعلم الاختلافات الدقيقة بين الإجراءات الجراحية المتشابهة، مثل شدة التوتر المناسب اللازم للتعامل مع الأنسجة دون التسبب في ضرر.

تعد مقاطع الفيديو التدريبية هذه جزءاً صغيراً جداً من مستودع واسع النطاق للبيانات الجراحية. مع ما يقرب من 7000 روبوت دافنشي قيد الاستخدام في جميع أنحاء العالم، هناك مكتبة ضخمة من العروض الجراحية للمراقبة والتعلم منها، والتي يستخدمها فريق البحث الآن لتوسيع ذخيرة الذكاء الاصطناعي الجراحية لدراسة جديدة لم تُنشر بعد.

«في عملنا المتابع، والذي سنصدره قريباً، ندرس ما إذا كانت هذه النماذج يمكن أن تعمل في الإجراءات الجراحية طويلة المدى التي تنطوي على هياكل تشريحية غير مرئية»، يكتب كيم، في إشارة إلى الإجراءات الجراحية المعقدة التي تتطلب التكيف مع حالة المريض في أي وقت معين، مثل إجراء عملية جراحية على جرح داخلي خطير.

التحقق من صحة النموذج المطور

أثناء التطوير، عمل الفريق عن كثب مع الجراحين الممارسين لتقييم أداء النموذج وتقديم ملاحظات حاسمة (خاصة فيما يتعلق بالتعامل الدقيق مع الأنسجة)، والتي قام الروبوت بدمجها في عملية التعلم الخاصة به.

أخيراً، للتحقق من صحة النموذج، استخدموا مجموعة بيانات منفصلة غير مدرجة في التدريب الأولي لإنشاء محاكاة افتراضية، ما يضمن قدرة الذكاء الاصطناعي على التكيف مع السيناريوهات الجراحية الجديدة وغير المرئية قبل الشروع في اختبارها في الإجراءات المادية. أكد هذا التحقق المتبادل قدرة الروبوت على التعميم بدلاً من مجرد حفظ الإجراءات، وهو أمر بالغ الأهمية بالطبع نظراً للعدد المجهول المحتمل الذي قد ينشأ في غرفة العمليات.

جراح آلي «ذو خبرة»

كل شيء سار بشكل جميل إذ تعلم نموذج الروبوت هذه المهام إلى مستوى الجراحين ذوي الخبرة. يقول أكسل كريغر، الأستاذ المساعد في الهندسة الميكانيكية في جامعة جونز هوبكنز والمؤلف الرئيسي للدراسة، في بيان عبر البريد الإلكتروني: «إنه لأمر سحري حقاً أن يكون لدينا هذا النموذج حيث كل ما نقوم به هو تلقيمه مدخلات الكاميرا، ويمكنه التنبؤ بالحركات الروبوتية اللازمة للجراحة». «نعتقد أن هذا يمثل خطوة مهمة إلى الأمام نحو أفق جديد في مجال الروبوتات الطبية».

تطوير رائد

إن أحد مفاتيح هذا النجاح هو استخدام الحركات النسبية بدلاً من التعليمات المطلقة. ففي نظام دافنشي قد لا تنتهي الأذرع الآلية إلى حيث هي مقصودة تماماً بسبب التناقضات الطفيفة في حركة المفصل التي تتراكم على مدار عدة حركات ويمكن أن تؤدي في النهاية إلى أخطاء كبيرة -خاصة في بيئة حساسة مثل الجراحة. كان على الفريق إيجاد حل، لذا بدلاً من الاعتماد على هذه القياسات، قام بتدريب النموذج على التحرك بناءً على ما يلاحظه في الوقت الفعلي أثناء إجراء العملية.

لكن الابتكار الرئيسي هنا هو أن التعلم بالتقليد يزيل الحاجة إلى البرمجة اليدوية للحركات الفردية. قبل هذا الاختراق، كانت برمجة الروبوت للخياطة تتطلب ترميزاً يدوياً لكل حركة بالتفصيل. يقول كيم إن هذه الطريقة كانت أيضاً عرضة للخطأ وتشكل قيداً رئيسياً في تقدم الجراحة الروبوتية. إذ إنها حدت مما يمكن للروبوت فعله بسبب جهود التطوير، والافتقار إلى المرونة التي جعلت من الصعب للغاية على الروبوتات القيام بمهام جديدة.

ومع ذلك، يسمح التعلم بالتقليد للروبوت بالتكيف بسرعة مع أي شيء يمكن مشاهدته، والتعلم على غرار طالب الجراحة. «(نحن) نحتاج فقط إلى جمع بيانات التعلم التقليدي لإجراءات مختلفة، ويمكننا تدريب الروبوت على تعلمها في غضون يومين»، كما يقول كريغر. «هذا يسمح لنا بالتعجيل نحو هدف الاستقلالية مع تقليل الأخطاء الطبية وتحقيق جراحة أكثر دقة».

تقييم مدى النجاح

لقياس مدى نجاح الذكاء الاصطناعي، حدد الباحثون مقاييس الأداء الرئيسية، مثل الدقة في وضع الإبرة والاتساق في التلاعب بالأنسجة باستخدام مجموعة من البيئات الجراحية الوهمية المادية، والتي تضمنت محاكيات الأنسجة الاصطناعية والدمى الجراحية. وكانت النتائج مذهلة. يقول كريغر: «النموذج جيد جداً في تعلم الأشياء التي لم نعلمه إياها. على سبيل المثال، إذا أسقط الإبرة، فسوف يلتقطها تلقائياً ويستمر».

لا تعد هذه القدرة على التكيف مهمة فقط لمواصلة تعلم مهارات جديدة ولكنها أيضاً ضرورية للتعامل مع الأحداث غير المتوقعة في الجراحات الحية، مثل تمزق الشريان أو تغير العلامات الحيوية للمريض فجأة. بالإضافة إلى ذلك، أظهر النموذج كفاءة زمنية محسنة، ما أدى إلى تقليل وقت الانتهاء للمهام الجراحية القياسية مثل الخياطة بنحو 30 في المائة، وهو أمر واعد بشكل خاص للعمليات الحرجة من حيث الوقت.

ويتصور العلماء سيناريو حيث تساعد هذه الروبوتات الجراحين في المواقف عالية الضغط، وتعزيز قدراتهم وتقليل الخطأ البشري. سيؤثر جراحو الذكاء الاصطناعي المستقبليون بشكل كبير على توفر الرعاية الجراحية، مما يجعل التدخلات الطبية عالية الجودة متاحة لعدد أكبر.

اللوائح التنظيمية وأخلاقيات الطب

هناك أيضاً تحديات أخلاقية وتنظيمية يجب معالجتها قبل نشر مثل هذا الذكاء الاصطناعي في بيئات جراحية حقيقية دون إشراف بشري. فالقفزة نحو الروبوتات الجراحية المستقلة تثير مخاوف أخلاقية جديدة.

هناك قضية المساءلة: من سيكون مسؤولاً إذا حدثت مشكلة؟ الشركة التي صنعت الجراح الذكي؟ المهنيون الطبيون الذين يشرفون عليه (إذا كان هناك أي إشراف)؟ هناك أيضاً مسألة موافقة المريض، والتي ستتطلب تثقيف كل من الشخص الذي يخضع للجراحة والأشخاص المحيطين به حول ماهية هذا الذكاء الاصطناعي، وما الذي يمكنهم فعله بالضبط، وما هي المخاطر التي تشكلها الروبوتات مقارنة بالجراحين البشر.

يعترف كيم بأن المستقبل الآن في منطقة رمادية حيث يمكن للجميع مجرد التكهن بما يجب أن يحدث أو سيحدث. ستكون أيدي السلطات التنظيمية مشغولة، من معالجة المساءلة والمخاوف الأخلاقية عند السماح لجراحي الذكاء الاصطناعي بالعمل بشكل مستقل، إلى وضع معايير للحصول على موافقة مستنيرة من المرضى.

ولكن عند الاختيار بين إجراء عملية جراحية طارئة منقذة للحياة بواسطة جراح مستقل أو عدم تلقي العلاج لأن الجراح البشري غير متاح (مثلاً في مكان بعيد أو منطقة متخلفة)، يزعم كيم أن الخيار الأفضل واضح. يمكنني بسهولة أن أتخيل مستقبلاً قريباً حيث يبدأ الناس في اختيار روبوتات الذكاء الاصطناعي على نظرائهم من البشر - في ظل وجود دليل إحصائي على أن جراحي الذكاء الاصطناعي يعملون بأمان.

وبعيداً عن التحديات الأخلاقية والقانونية، هناك حاجة إلى المزيد من العمل لتمكين التنفيذ العملي. ستحتاج المستشفيات إلى الاستثمار في البنية الأساسية التي تدعم جراحة الروبوتات بالذكاء الاصطناعي، بما في ذلك الأجهزة المادية والخبرة الفنية للتشغيل والصيانة. بالإضافة إلى ذلك، سيكون تدريب الفرق الطبية على إدارة العملية أمراً بالغ الأهمية. فالأطباء سيحتاجون إلى فهم الآلة ومتى يكون التدخل ضرورياً، وفي النهاية تحويل الجراحين البشريين من المهام الجراحية المباشرة إلى أدوار تركز على الإشراف والسلامة.

جراحات بسيطة أولاً

على المستوى العملي، يتصور الباحثون تقدماً تدريجياً، بدءاً بجراحات أبسط وأقل خطورة مثل إصلاح الفتق والتقدم تدريجياً إلى عمليات أكثر تعقيداً. سيساعد النهج التدريجي في التحقق من موثوقية الروبوت مع معالجة المخاوف التنظيمية والأخلاقية بمرور الوقت، فضلاً عن مساعدة السكان على الثقة في الذكاء الاصطناعي لإجراء العمليات الحرجة للحياة.

يقول كريغر: «ما زلنا في المراحل الأولى من فهم ما يمكن أن تحققه هذه الآلات حقاً. الهدف النهائي هو الحصول على أنظمة جراحية مستقلة تماماً وموثوقة وقابلة للتكيف وقادرة على إجراء العمليات الجراحية التي تتطلب حالياً اختصاصياً مدرباً تدريباً عالياً».

* مجلة «فاست كومباني» خدمات «تريبيون ميديا»

اقرأ أيضاً