أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

تُسهِّل الوصول إلى الإجابات بسرعة

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي
TT

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

لا تحل محل الحكم والتقدير البشري والتحليل اللازم لعملية البحث العلمي إن بدء مشروع بحثي جديد بالنسبة إلى الطلبة والباحثين المتخصصين على حد سواء، يعني الغوص في المؤلفات الأكاديمية لفهم ما كتبه الآخرون بالفعل. ويمكن أن يستغرق ذلك وقتاً ليس بالقصير، حيث يتعين على الباحثين تتبع المقالات التي جرى نشرها في الدوريات العلمية، والبحث فيها من أجل بدء بحثهم وصياغة نتائجهم.

ذكاء اصطناعي «باحث»

مع ذلك تستهدف مجموعة متزايدة من الأدوات المزودة بتقنية الذكاء الاصطناعي جعل تلك العملية أسهل، حيث يمكنها أن تساعد الباحثين بشكل أسرع على العثور على الأوراق البحثية ذات الصلة، واستخراج المعلومات ذات الصلة منها، أو كلا الأمرين معاً. تقول بريان كيرش، مديرة المكتبة في «إلينوي كوليدج»: «قد تكون تلك طريقة نافعة حقاً لبدء البحث، خصوصاً بالنسبة إلى الطلبة الذين لم يجيدوا عملية البحث ويألفوها بعد، ما دام تعليمهم كيفية استخدامها يجري على نحو أخلاقي، وإخبارهم بأنهم يستطيعون التوسع بشكل يتجاوز نطاق استخدامها، بعد ذلك».

يمكن أن تساعد أداة تسمى «إليسيت» Elicit الباحثين على إجراء ما تُعرف باسم المراجعات المنهجية، التي تتضمن النظر في عدد كبير من الأبحاث المنشورة للعثور على إجابة عن سؤال، مثل تأثير دواء محدد على حالة مَرضية. ويقول جيمس برادي، مدير الهندسة في «إليسيت»: «إن الأمر (إجراء المراجعات) يدوي تماماً. إنه يحتاج إلى فرق من البشر تعمل لأشهر طويلة، ويكلف ذلك مئات الآلاف من الدولارات أو ربما الملايين».

يمكن لـ«إليسيت» تنفيذ تلك العملية بشكل أسرع، وكذلك مساعدة الباحثين من خلال العثور سريعاً على أوراق بحثية منشورة متعلقة بسؤال محدد وتلخيصها. كذلك يمكنها توليد جداول تصف مجموعة كاملة من الأوراق البحثية ذات الصلة، تتضمن أعمدة لنقاط البيانات مثل الخوارزميات، والتقنيات الإحصائية المستخدمة، والعوامل المتغيرة التي تم فحصها، وعدد المشاركين في التجارب.

وتوصي الشركة الباحثين مع ذلك بالنظر في الأوراق البحثية الأصلية. ويؤكد برادي أن تلك الأداة لا تحل محل الحكم والتقدير البشري، والتحليل اللازم لعملية البحث العلمي. ويوضح قائلاً: «لا يشبه الأمر الوصول إلى الخطوة النهائية في (إليسيت) والنقر على زر النشر، لينتهي بك الحال إلى دورية (نيتشر) العلمية أو ما شابه»، مع ذلك يمكنك تسريع عملية تمحيص وفهم الأعمال السابقة.

تقنيات بحث للطلبة

يمثل فهم كيفية مساعدة الذكاء الاصطناعي لمجال البحث الأكاديمي جزءاً من سؤال أكبر في المجال، وهو: كيف ومتى يمكن للتكنولوجيا أن تحل محل الشبكة التقليدية لأدوات البحث، أو تصبح مكمِّلة لها؟ أدرك علماء الكومبيوتر منذ التسعينات أن محيط النشر الأكاديمي، الذي يقتبس فيه الباحثون من الأوراق البحثية بعضهم من بعض، وينشرون عملهم في دوريات علمية ذات سمعة جيدة في مجال محدد، لا يختلف كثيراً عن بيئة الإنترنت. ويعني ذلك إمكانية انتقال تقنيات العثور على مواد ذات صلة، وتقليل أخطاء وهلاوس الذكاء الاصطناعي إلى الحد الأدنى، وتقديم نتائج مفيدة وقابلة للإثبات للمستخدم من المجال الأكاديمي إلى شبكة الإنترنت الأوسع نطاقاً.

بطبيعة الحال لا يكون جميع من يبحثون عن إجابات علمية من العلماء المتخصصين. وتقول المؤسسات، التي تقف وراء نشر تلك الأدوات، إنه من الممكن أن تصبح تلك الأدوات مفيدة بشكل خاص للأشخاص الذين يتطلعون إلى فهم مجالات جديدة يهتمون بها، سواء كانوا طلبة أو متخصصين يُجرون عملاً متداخلاً معرفياً، أو أفراد من عامة الشعب مهتمين بموضوع ما. ويقول إيريك أولسون، أحد مؤسسي محرك البحث «كونسينسيس إيه آي» Consensus، والرئيس التنفيذي له، إن نحو 50 في المائة من أدوات البحث العلمي توجد في المؤسسات الأكاديمية، حيث كثيراً ما يستخدمها طلبة السنة الجامعية النهائية. ويوضح قائلاً: «عادةً ما نبلي جيداً مع الأشخاص الذين يحتاجون إلى طريقة سهلة وسريعة في البحث، لكن ليسوا خبراء بعد».

لغة استفسارات طبيعية

يسمح «كونسينسيس» للمستخدمين بالكتابة بلغة طبيعية تلقائية استفسارات لتلقي أجوبة موجزة مستقاة من أعمال منشورة. ويُظهر المحرك ملخصات لأوراق بحثية محددة، وبيانات تعريفية وصفية، مثل سنة النشر، وعدد الاقتباسات، وإشارة إلى مدى الإجماع والتوافق العلمي على مسألة بعينها.

ومن المستخدمين غير المتخصصين لهذه الأداة، العاملون في مجال الرعاية الصحية مثل الأطباء الذين يستخدمون هذه الأداة من أجل الحصول على معلومات متبصرة بطريقة أسرع من تلك التي توفرها محركات البحث الأكاديمية التقليدية أو محرك البحث «غوغل». كذلك يستعين المستخدمون بمحرك البحث «كونسينسيس» من أجل البحث في الموضوعات المتعلقة بالصحة، وممارسات تربية الأبناء، والأمور السياسية في الأخبار، على حد قول أولسون.

لا تعتمد شركة «كونسينسيس»، مثلها مثل الشركات الأخرى في هذا المجال، فقط على نموذج لغات كبير يستند إلى نمط «المحوّل التوليدي المدرب مسبقاً» (الذي تعتمد عليه تطبيقات الدردشة) من أجل تقديم إجابات للمستخدم.

وتوفر الشركة محرك بحث عاماً للعثور على أوراق بحثية تتناول مسألة أو استفسار، ومجموعة متنوعة من نماذج اللغة المدربة جيداً لاستخلاص معلومات ذات صلة. والأهم من ذلك التحقق من أن تلك الورقة البحثية متعلقة بالموضوع، مما يحد من احتمالات توضيح نموذج ذكاء اصطناعي متحمس حقائق ليست موجودة فعلياً. يقول أولسون: «سوف أتيح وصول الأمر إلى النموذج فقط، إذا كنا نعتقد أن لديه حقاً معلومة أو رؤى متبصرة ذات صلة به. إنها حيلة رائعة للحد من خطر تأويل الورقة البحثية بشكل خاطئ».

إجابات موجزة

وقد طوّرت شركة «إلسفير»، التي تعمل في مجال النشر الأكاديمي، أداة ذكاء اصطناعي تسمى «سكوبوس إيه آي» Scopus AI للبحث في الأبحاث التي تم جمعها في قاعدة البيانات الخاصة بـ«سكوبوس»، والتي تتضمن ملخصات لمقالات، وبيانات تعريفية، من عشرات الآلاف من الدوريات العلمية، تشمل تلك التي نشرتها دور نشر منافسة.

ويمكن لـ«سكوبوس» توليد إجابات موجزة استناداً إلى استفسارات محددة، واقتراح أسئلة إضافية لمساعدة المستخدمين في توسيع نطاق معرفتهم بالمجال، وتسليط الضوء على مؤلفي «الأوراق البحثية الأساسية» و«الخبراء في الموضوع» الذين تركوا أثراً خاصاً في مجال الخبرة المذكور. يقول ماكسيم خان، نائب رئيس شؤون المنتجات التحليلية ومنصة البيانات في «إلسفير»: «وجدنا أن هذا احتياج مشترك لدى عدد من الأشخاص المختلفين الذين يقفون عند منحدر محاولة فهم اختصاص آخر». ويقول خان إن المستخدمين أكدوا أن المحرك يساعدهم على فهم المجالات الجديدة على نحو أسرع، ويستعرض أوراقاً بحثية لم يكونوا ليكتشفوها لولاه. وبسبب شروط الترخيص، لا تتضمن الأداة عرض النص الكامل، مما يعني أن المستخدمين لا يستطيعون الاستفسار بشكل مباشر عن المادة في مقالات تتجاوز الملخصات والاقتباسات.

يمكن لبرامج أخرى مساعدة المستخدمين على التعمق داخل أبحاث محددة. وتسمح أداة ذكاء اصطناعي من «جيه ستور» JStor، وإن كان حجمها لا يزال محدوداً، للمستخدمين بالاطلاع على ملخصات المقالات المناسبة لاستفساراتهم المحددة، ويمكنها الإجابة عن الأسئلة استناداً إلى المحتوى من الوثائق، والإشارة إلى فقرات محددة تتضمن الإجابة. يمكن لذلك أن يساعد المستخدمين في اكتشاف الأوراق البحثية ذات الصلة لقراءتها بتمعن بعد ذلك، ويمكن للأداة أيضاً الإشارة إلى موضوعات أخرى، أو أوراق بحثية محددة لينظر فيها المستخدم استناداً إلى فقرات محددة.

* «مجلة «فاست كومباني»

ـ خدمات «تريبيون ميديا»



ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة
TT

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ذكاء اصطناعي «شديد الحساسية للرائحة» يكتشف المصنوعات المقلَّدة

ابتكر أليكس ويلشكو، مؤسس شركة الذكاء الاصطناعي «أوسمو»، وفريقه نسخة «ألفا» من جهاز خيالي بحجم حقيبة الظهر مزودة بمستشعر شمّ يستخدم الذكاء الاصطناعي لتحديد المنتجات المقلدة من خلال تحليل تركيبها الكيميائي.

وأقامت شركة «أوسمو» (Osmo) شراكة مع منصات إعادة بيع الأحذية الرياضية لإظهار أن اختبار الشم عالي التقنية قادر على تحديد المنتجات المزيفة بدرجة عالية من الدقة.

الجزيئات المتطايرة تحدد الرائحة

كل شيء في العالم له رائحة، من الملابس إلى السيارات إلى جسمك. هذه الروائح هي جزيئات متطايرة، أو كيمياء «تطير» من تلك الأشياء وتصل إلى أنوفنا لتخبرنا بالأشياء. ويختبر الإنسان ذلك بوعي ووضوح عندما يكون هناك شيء جديد قرب أنفه، مثل شم سيارة جديدة أو زوج من الأحذية الرياضية. لكن حتى عندما لا تلاحظ الروائح، فإن الجزيئات موجودة دائماً.

رائحة المنتجات المقلَّدة

الأحذية المقلدة لها رائحة مختلفة عن الأحذية الحقيقية. إذ لا تختلف الأحذية الرياضية الأصلية والمقلدة في المواد، فحسب، لكن في التركيب الكيميائي. حتى الآن، اعتمدت شركات مثل «استوكس» (StockX) على اختبارات الشم البشري والفحص البصري لتمييز الأصالة - وهي عملية تتطلب عمالة مكثفة ومكلفة. وتهدف التقنية الجديدة إلى تبسيط العملية.

خريطة تحليل الفوارق اللونية

تدريب الذكاء الاصطناعي على الاختلافات الجزيئية

ووفقاً لويلشكو، درَّب فريقه «الذكاء الاصطناعي باستخدام أجهزة استشعار شديدة الحساسية للتمييز بين هذه الاختلافات الجزيئية».

وستغير هذه التكنولوجيا كيفية إجراء عمليات التحقق من الأصالة في الصناعات التي تعتمد تقليدياً على التفتيش اليدوي والحدس. وتهدف إلى رقمنة هذه العملية، وإضافة الاتساق والسرعة والدقة.

20 ثانية للتمييز بين المزيف والحقيقي

ويضيف أن آلة «أوسمو» تستغرق الآن نحو 20 ثانية للتمييز بين المنتج المزيف والحقيقي. وقريباً، كما يقول، ستقل الفترة إلى خمس ثوانٍ فقط. وفي النهاية، ستكون فورية تقريباً.

تم بناء أساس التقنية على سنوات من العمل المخبري باستخدام أجهزة استشعار شديدة الحساسية، كما يصفها ويلشكو، «بحجم غسالة الأطباق»، ويضيف: «تم تصميم أجهزة الاستشعار هذه لتكون حساسة مثل أنف الكلب، وقادرة على اكتشاف أضعف البصمات الكيميائية».

وتعمل هذه المستشعرات على مدار الساعة طوال أيام الأسبوع، وتجمع باستمرار البيانات حول التركيب الكيميائي لكل شيء من البرقوق والخوخ إلى المنتجات المصنعة»، كما يوضح ويلشكو.

خريطة الرائحة الرئيسية

تشكل البيانات التي تم جمعها العمود الفقري لعملية تدريب الذكاء الاصطناعي الخاصة بالشركة، والتي تساعد في إنشاء فهم عالي الدقة للروائح المختلفة ومنحها موقعاً في نظام إحداثيات يسمى خريطة الرائحة الرئيسية.

إذا كنت على دراية بكيفية ترميز ألوان الصورة في الصور الرقمية، فان الطريقة تعمل بشكل مماثل. إذ تقريباً، يتوافق لون البكسل مع مكان على خريطة RGB، وهي نقطة في مساحة ثلاثية الأبعاد بها إحداثيات حمراء وخضراء وزرقاء.

تعمل خريطة الرائحة الرئيسية بشكل مشابه، باستثناء أن الإحداثيات في تلك المساحة تتنبأ بكيفية ورود رائحة مجموعات معينة من الجزيئات في العالم الحقيقي. يقول ويلشكو إن هذه الخريطة هي الصلصة السرية لشركة «أوسمو» لجعل الاختبار ممكناً في الوحدات المحمولة ذات أجهزة استشعار ذات دقة أقل وحساسة تقريباً مثل أنف الإنسان.

من المختبر إلى الأدوات اليومية

يقول ويلشكو إنه في حين أن أجهزة الاستشعار المحمولة أقل حساسية من وحدات المختبر، فإن البيانات المكثفة التي يتم جمعها باستخدام أجهزة الاستشعار عالية الدقة تجعل من الممكن إجراء اكتشاف فعال للرائحة. مثل الذكاء الاصطناعي لقياس الصورة القادر على استنتاج محتويات الصورة لإنشاء نسخة بدقة أعلى بناءً على مليارات الصور من نموذجه المدرب، فإن هذا يحدث بالطريقة نفسها مع الرائحة. تعدّ هذه القدرة على التكيف أمراً بالغ الأهمية للتطبيقات في العالم الحقيقي، حيث لا يكون نشر جهاز بحجم المختبر ممكناً.

من جهته، يشير روهينتون ميهتا، نائب الرئيس الأول للأجهزة والتصنيع في «أوسمو»، إلى أن مفتاح عملية التعريف لا يتعلق كثيراً بالروائح التي يمكننا إدراكها، لكن بالتركيب الكيميائي للكائن أو الشيء، وما يكمن تحته. ويقول: «الكثير من الأشياء التي نريد البحث عنها والتحقق من صحتها قد لا يكون لها حتى رائحة محسوسة. الأمر أشبه بمحاولة تحليل التركيب الكيميائي».

وهو يصف اختباراً تجريبياً أجرته الشركة مؤخراً مع شركة إعادة بيع أحذية رياضية كبيرة حقق معدل نجاح يزيد على 95 في المائة في التمييز بين الأحذية المزيفة والأحذية الحقيقية.

إلا أن الطريقة لا تعمل إلا مع الأشياء ذات الحجم الكبير، في الوقت الحالي. ولا يمكن للتكنولوجيا التحقق من صحة الأشياء النادرة جداً التي تم صنع ثلاثة منها فقط، مثلاً.

هذا لأنه، كما أخبرني ويلشكو، يتعلم الذكاء الاصطناعي باستخدام البيانات. لكي يتعلم رائحة طراز جديد معين من الأحذية، تحتاج إلى إعطائه نحو 10 أزواج من الأحذية الرياضية الحقيقية. في بعض الأحيان، تكون رائحة البصمة خافتة لدرجة أنه سيحتاج إلى 50 حذاءً رياضياً أصلياً ليتعلم الطراز الجديد.

خلق روائح جديدة

لا يشم مختبر «أوسمو» الأشياء التي صنعها آخرون فحسب، بل يخلق أيضاً روائح جديدة داخل الشركة باستخدام أنظمة الذكاء الاصطناعي والروبوتات نفسها. أظهر علماء الشركة كيف يعمل هذا بطريقة عملية خلال تجربة أطلقوا عليها اسم مشروع نقل الرائحة. لقد التقطوا رائحة باستخدام مطياف الكتلة للتفريق اللوني الغازي (GCMS)، الذي يحللها إلى مكوناتها الجزيئية ويحمل البيانات إلى السحابة. أصبحت هذه البيانات الملتقطة إحداثيات على خريطة الرائحة الرئيسية. بمجرد رسم الخريطة، يتم توجيه روبوت التركيب في مكان آخر لخلط عناصر مختلفة وفقاً لوصفة الرائحة، وإعادة إنشاء الرائحة الأصلية بشكل فعال.

رائحة مصنّعة لتعريف المنتجات

باستخدام تقنية تصنيع الرائحة نفسها، يتخيل ويلشكو أن «أوسمو» يمكن أن تدمج جزيئات عديمة الرائحة مباشرة في المنتجات بصفتها معرفاتٍ فريدة؛ مما يخلق توقيعاً غير مرئي لن يكون لدى المزورين أي طريقة لاكتشافه أو تكراره. فكر في هذا باعتباره ختماً غير مرئي للأصالة.

وتعمل شركة «أوسمو» على تطوير هذه العلامات الفريدة لتُدمج في مواد مثل الغراء أو حتى في القماش نفسه؛ ما يوفر مؤشراً سرياً لا لبس فيه على الأصالة.

هناك فرصة كبيرة هنا. وكما أخبرني ويلشكو، فإن صناعة الرياضة هي سوق بمليارات الدولارات، حيث أعلنت شركة «نايكي» وحدها عن إيرادات بلغت 60 مليار دولار في العام الماضي. ومع ذلك، تنتشر النسخ المقلدة من منتجاتها على نطاق واسع، حيث أفادت التقارير بأن 20 مليار دولار من السلع المقلدة تقطع هذه الإيرادات. وقد صادرت الجمارك وحماية الحدود الأميركية سلعاً مقلدة بقيمة مليار دولار فقط في العام الماضي في جميع قطاعات الصناعة، وليس فقط السلع الرياضية. ومن الواضح أن تقنية الرائحة هذه يمكن أن تصبح سلاحاً حاسماً لمحاربة المنتجات المقلدة، خصوصاً في أصعب الحالات، حيث تفشل الأساليب التقليدية، مثل فحص العلامات المرئية.

الرائحة هي مفتاح المستقبل

يرى ويلشكو أن النظام جزء من استراتيجية أوسع لرقمنة حاسة الشم - وهو مفهوم بدأ العمل عليه عند عمله في قسم أبحاث «غوغل». إن أساس النظام يكمن في مفهوم يسمى العلاقة بين البنية والرائحة. وتتلخص هذه العلاقة في التنبؤ برائحة الجزيء بناءً على بنيته الكيميائية، وكان مفتاح حل هذه المشكلة هو استخدام الشبكات العصبية البيانية.

إمكانات طبية لرصد الأمراض

إن الإمكانات الطبية لهذه التقنية هي تحويلية بالقدر نفسه. ويتصور ويلشكو أن النظام يمكن استخدامه للكشف المبكر عن الأمراض - مثل السرطان أو السكري أو حتى الحالات العصبية مثل مرض باركنسون - من خلال تحليل التغييرات الدقيقة في رائحة الجسم التي تسبق الأعراض غالباً.

لكنه يقول إنه حذّر بشأن موعد حدوث هذا التقدم؛ لأنه يجب على العلماء أن يحددوا أولاً العلامات الجزيئية لهذه الروائح قبل أن تتمكن الآلة من اكتشاف أمراض مختلفة. وتعمل الشركة بالفعل مع عدد من الباحثين في هذا المجال.

* مجلة «فاست كومباني» - خدمات «تريبيون ميديا»