مشاريع فضائية لإعادة الشحنات من المدار نحو الأرض

لإيصال الاختبارات العلمية والأدوية المصنعة خارجها

حاويات شحن فضائية
حاويات شحن فضائية
TT

مشاريع فضائية لإعادة الشحنات من المدار نحو الأرض

حاويات شحن فضائية
حاويات شحن فضائية

مستقبل التصنيع التحويلي في الفضاء يعتمد على تصاميم مركبات لإعادة الأشياء إلى الأرض ظلت صناعة الفضاء مبنية على طريق ذي اتجاه واحد. إذ كانت عقود من الابتكارات البشرية جيدة للغاية في إرسال المركبات الفضائية والأقمار الاصطناعية إلى المدار، ولكن الشركات لا تزال تعمل على إيجاد مسار فعال لعودة البضائع، ما سيمكن الصناعة التحويلية الفضائية من الازدهار.

شحنات من المدار إلى الأرضتعتبر شركة «أوت - بوست - Outpost» إحدى الشركات الناشئة التي تتصدر تلك المهمة، والتي تأخذ منهجاً مختلفاً تماماً في إرجاع الأشياء إلى الأرض من المدار. وهكذا تستعد شركة «إيرث ريترن - Earth Return» ومقرها لوس أنجليس للإطلاق الأول ثم العودة لمركبة «كاريول - Carryall» الفضائية وهي بحجم حاوية شحن.

منذ الأيام الأولى لرحلات الفضاء البشرية، ظلت تكنولوجيا العودة إلى الأرض من دون تغيير إلى حد كبير. إذ يتم تزويد الكبسولات الفضائية العائدة من المدار بالدروع الحرارية الاستئصالية لتحمل الحرارة الهائلة الناتجة عن العودة. وهي مليئة بمخزون كبير من الوقود الدافع لإبطاء سرعتها بالقوة عبر الغلاف الجوي، ولديها مظلات ثقيلة أو «بارافويل»، التي يتم فتحها ونشرها على ارتفاعات منخفضة لجلب الكبسولات إلى بقية الطريق إلى الأرض.

نتيجة لذلك، فإن الكبسولات الفضائية لها قدرة محدودة وصعوبة معروفة في الوصول إلى هدف محدد سلفاً على الأرض.

إن أي شخص يحاول الحصول على الأشياء - من نتائج التجارب العلمية إلى الأدوية المصنعة في المدار من الأرض - يواجه تكاليف باهظة للغاية، الأمر الذي يؤدي في النهاية إلى الحد من عدد الأشياء التي يمكن بناؤها أو اختبارها في الفضاء وإعادتها في حالة سليمة.

ويقول جيسون دون، الرئيس التنفيذي لشركة «أوت - بوست»: «الشركات التي نجحت في هذا، بجمع التبرعات على الأقل، وجدت حالات استخدام لأشياء يمكن أن تتلاءم مع هذه الكبسولات الصغيرة ذات القيمة الهائلة. لذا، يمكن وضع شيء ما في أنبوب اختبار أو قارورة تبلغ قيمتها ملايين الدولارات».

مع ذلك، فإن مستقبل التصنيع التحويلي في الفضاء يعتمد على شركات العودة للأرض التي تجد وسيلة لإعادة كميات أكبر من الفضاء - مثل حاويات الشحن، على سبيل المثال.

مراحل إعادة الشحنات من المدار إلى الأرض (أوت بوست)

نظام «أوت-بوست»تجمع المركبة الفضائية «فيريول - Ferryall» و«كاريول - Carryall» التابعة لشركة «أوت - بوست» عدداً من التقنيات البسيطة نسبياً لإعادة الأجسام من المدار بطريقة ثورية. وتشمل هذه المكونات ما يلي:

> «حافلة المدار»: وهي تحمل نظام الدفع الذي يسمح للمركبة الفضائية بالمناورة في المدار وإعادة إرسالها إلى الأرض.

> الدرع الحراري: الدرع الحراري لشركة «أوت - بوست»، الذي يستخدم التكنولوجيا التي طورتها وكالة «ناسا»، وتم اختباره عام 2023، مصنوع من نسيج ثلاثي الأبعاد من ألياف الكربون التي تتكشف في المدار لحماية الحمولة وإبطاء سرعة المركبة.

> الحاوية: يمكن لمركبة «فيريول - Ferryall» أن تحمل حمولة قدرها 100 كيلوغرام، في حين أن مركبة «كاريول - Carryall» هي بحجم حاوية شحن قياسية بطول 20 قدماً ويمكن أن تستضيف حمولات تصل إلى 10 أطنان.

> الطائرة الشراعية الآلية: عند العودة للأرض، يُنشر جناح الطائرة الشراعية ويقود المركبة الفضائية آلياً إلى مقصدها بدقة متناهية.

تأتي مركبة «فيريول - Ferryall»، النموذج الأصغر، مصممة لهندسة مشاركة الرحلات لدى شركة «سبيس إكس»، في حين أن مركبة «كاريول - Carryall» سوف تكون قادرة على الانتظام في منصات الإطلاق المتوسطة الحالية، مثل «فالكون 9».كيفية العملبمجرد وصولها إلى المدار، تخرج «كاريول - Carryall» من مركبة الإطلاق ويُفتح درعها الحراري.

> يسمح نظام الدفع على متن المركبة بالمناورة كما يفعل أي قمر اصطناعي آخر. وعندما تكون مستعدة للعودة إلى الأرض، فإنها توجه نفسها نحو مسار إعادة الدخول وتبدأ في الهبوط.

> من هنا، يُظهر الدرع الحراري فوائده الفريدة. ومن خلال التبريد الإشعاعي، فإنه يحمي الحمولة خلفه من الحرارة المفرطة من دون الحاجة إلى غلاف خلفي. الأهم من ذلك، أن المساحة الكبيرة للدرع الحراري تؤدي إلى إبطاء سرعة المركبة إلى ما دون سرعة الصوت بصورة أسرع بكثير من الكبسولات أو الطائرات الفضائية.

> على مسافة 30 كيلومتراً تقريباً عن الأرض، تنشر «كاريول - Carryall» مظلة التوجيه المسؤولة عن استقرار المركبة الفضائية والإقلال من سرعتها أثناء إغلاق الدرع الحراري.

> على مسافة 20 كيلومتراً تقريباً، تُطلق «كاريول - Carryall» مظلتها وتفتح جناحها الشراعي الذي يتحكم به الروبوت، والذي يسمح لشركة «أوت - بوست» بتوفير التسليم من نقطة إلى نقطة، في أي مكان في العالم، بدقة مذهلة.

يقول جيسون دون: «العودة للأرض لا تعني مجرد العودة إلى الكوكب. إنها تتعلق بالعودة إلى مكان محدد للغاية على الأرض. نريد بلوغ دقة منصة الهبوط».

عززت الشركة، خلال أكثر من 100 اختبار طيران، من هذه الدقة. وفي أحد الاختبارات، نشرت مركبة الاختبار جناحها الشراعي من منطاد الطقس على ارتفاع 20 كيلومتراً، وحلقت لمسافة تزيد على 180 كيلومتراً إلى الأسفل، وهبطت على الهدف بارتفاع 5 أمتار.

الحمولات المستقبليةيسمح هذا النظام للشركات باختبار الأشياء في الفضاء بهدف إعادتها إلى الأرض، وتصنيع كميات هائلة من السلع لبيعها على الأرض.

قال جيسون دون، في مؤتمر «أمازون مارس» عام 2023: «نظراً لأن نظام الدخول لدينا بأكمله هيكلي وخفيف الوزن ومنخفض الكتلة، يمكننا تخصيص كمية كبيرة من مركبتنا لحمولة الزبون. تخصص الكبسولة النموذجية الحالية العائدة من الفضاء نسبة 5 في المائة، أو ربما 10 في المائة، من كتلة الحمولة الكاملة لحمولة الزبون - إننا نخصص نسبة في نطاق 50 في المائة وأعلى».

تعتزم شركة «أوت - بوست» خفض تكلفة التصنيع التحويلي في الفضاء وفتح الباب أمام حالات استخدام جديدة في الصناعة التي قد تكون باهظة التكلفة مع نظم العودة الأخرى. إضافة إلى ذلك، تأمل الشركة في أن تقلل التكنولوجيا التي تمتلكها من كمية النفايات الفضائية في المدار، وتعزز من قابلية إعادة الاستخدام.

ووقعت الشركة بالفعل صفقة قيمتها 1.7 مليون دولار مع وزارة الدفاع الأميركية لبناء عبّارة فضائية لنقل العبارات لدعم مهام التجميع والتصنيع التحويلي في الفضاء (ISAM). كما أنها تتشارك مع وكالة «ناسا» لتطوير «عبّارة البضائع - Cargo Ferry»، التي سوف تُستخدم لإعادة الأشياء من محطات الفضاء التجارية والدولية.

ومن المقرر أن تبدأ أول مهمة للمركبة «فيريول - Ferryall» أوائل عام 2026، ومن المرجح أن يأتي العملاء الأوائل من الجيش الأميركي للتسليم من نقطة إلى نقطة، وتتطلع الشركات التجارية إلى إجراء اختبارات سريعة ومتكررة في المدار. كما يمكن لمركبة «كاريول - Carryall» الانطلاق في وقت مبكر من عام 2027.

• مجلة «فاست كومباني»

خدمات «تريبيون ميديا»



ألياف طبيعية تعزز كفاءة تقنيات تحلية المياه بتكلفة منخفضة

الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
TT

ألياف طبيعية تعزز كفاءة تقنيات تحلية المياه بتكلفة منخفضة

الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)
الألياف الطبيعية المستخلصة من مصادر نباتية وحيوانية تُعتبر بديلاً منخفض التكلفة وقابلًا للتحلل الحيوي (الدكتور محمد عجيزة)

تُشكل ندرة المياه العذبة تحدياً عالمياً زائداً، خصوصاً في المناطق الجافة التي تشهد استنزافاً سريعاً لمواردها المحدودة. كما يزيد النمو السكاني والتطور الاقتصادي من حدة المشكلة، حيث يرفعان الطلب على المياه لأغراض الشرب والزراعة والصناعة؛ مما يهدد الصحة العامة والأمن الغذائي.

وتعتمد الطرق التقليدية لتحلية المياه على الطاقة بشكل مكثف ولها آثار بيئية سلبية، بينما تعد تقنيات تحلية المياه بالطاقة الشمسية حلاً واعداً لمعالجة ندرة المياه والعمل المناخي، حيث تستفيد من الطاقة الشمسية المتجددة. وعلى الرغم من أن أنظمة «المقطرات» الشمسية لتحلية المياه تعد طريقة مستدامة، فإنها تواجه تحديات مثل الكفاءة المنخفضة التي تتراوح بين 30 و40 في المائة، ومعدلات إنتاج منخفضة للمياه العذبة، بالإضافة إلى التلوث البيئي الناجم عن استخدام مواد تقليدية، مثل المواد ذات التغير الطوري.

ألياف طبيعية

واستعرضت دراسة مرجعية أجراها باحثون مصريون، إمكانية استخدام الألياف الطبيعية بوصفها وسيلة مستدامة لتعزيز أداء الأنظمة الشمسية لتحلية المياه. وتتميز الألياف الطبيعية، المستخلصة من مصادر نباتية وحيوانية متاحة في المناطق النائية، بكونها بديلاً منخفض التكلفة، وقابلة للتحلل الحيوي، ومتعددة الاستخدامات.

ووفق النتائج المنشورة بعدد نوفمبر (تشرين الثاني) بدورية (Solar Energy)، يمكن للألياف الطبيعية مثل القطن، وقش الأرز، وألياف شجرة الموز، ونبات السيزال، وقش الخيزران، تحسين الأداء من خلال توفير الهيكل المسامي من أجل ترشيح المياه، وإزالة الشوائب، وتعزيز نقل الحرارة.

يقول الدكتور محمد عجيزة، الباحث الرئيسي للدراسة بقسم الهندسة الميكانيكية في جامعة كفر الشيخ، إن الألياف الطبيعية توفر حلاً مستداماً لتحسين كفاءة تحلية المياه بالطاقة الشمسية مع تقليل الأثر البيئي، لأنها تتميز بالتحلل البيولوجي، ما يجعلها خياراً جذاباً لتعزيز كفاءة الأنظمة الشمسية في المناطق التي تفتقر إلى الموارد.

وأضاف لـ«الشرق الأوسط» أن الألياف الطبيعية توفر امتصاصاً عالياً للإشعاع الشمسي؛ مما يُحسّن الاحتفاظ بالحرارة ويزيد معدلات التبخر، كما تعزز الكفاءة الحرارية والعزل وتقلل الفاقد الحراري؛ مما يزيد من كفاءة التكثيف بفضل مساحتها السطحية الكبيرة، فيما تُسهّل خصائصها نقل المقطر الشمسي، وتوزيعه في المناطق النائية، حيث تقلل من الوزن الإجمالي له.

تقنيات تحلية المياه بالطاقة الشمسية تعد حلا ًواعداً لمعالجة ندرة المياه والعمل المناخي (جامعة واترلو)

تقييم الأداء

أثبتت الدراسة أن الألياف الطبيعية تتمتع بقدرة استثنائية على امتصاص المياه تصل إلى 234 في المائة، بالإضافة إلى خصائصها الحرارية المميزة؛ مما يتيح استخدامها بوصفها مواد عازلة أو ممتصة أو موصلة للحرارة في الأنظمة الشمسية. ويسهم ذلك في تحسين عمليات التبخير والتكثيف. وتعمل هذه الألياف على تعزيز نقل الحرارة وتقليل فقد الطاقة؛ مما يؤدي إلى تحسين الكفاءة بنسبة 15 في المائة. كما وجد الباحثون أن هذه الألياف أثبتت قدرتها على زيادة إنتاجية المياه العذبة بشكل ملحوظ، حيث حققت زيادة تصل إلى 123.5 في المائة مع قشور الجوز الأسود، و126.67 في المائة مع مزيج من ألياف النباتات التي تنمو في البرك والمستنقعات وألياف السيزال.

وبالمقارنة مع المقطرات التقليدية، حققت بعض الألياف زيادة ملحوظة في إنتاج المياه العذبة، مثل نشارة الخشب وقش الأرز (62 في المائة)، واللوف الأسود (77.62 في المائة)، وألياف السيزال (102.7 في المائة)، والقماش القطني (53.12 في المائة)، وألياف النخيل (44.50 في المائة)، وألياف الكتان (39.6 في المائة).

وحددت الدراسة أبرز مميزات التوسع في استخدام الألياف الطبيعية في تقنيات تحلية المياه بالطاقة الشمسية، مثل وفرة الموارد الشمسية والمساحات الواسعة لتركيب الأنظمة، بالإضافة لكون الألياف خياراً مستداماً. كما تدعم زيادة استنزاف الموارد المائية العالمية، ونمو السكان، وزيادة الوعي بتغير المناخ الحاجة الملحة لهذه التكنولوجيا.

في المقابل، أشار الباحثون إلى تحديات تواجه هذه التقنيات، منها قلة الاستثمارات في الطاقة المتجددة، والوعي المحدود بفوائد أنظمة التحلية الشمسية، بالإضافة إلى قلة الانتشار والعوائق التجارية مقارنة بالتقنيات التقليدية، والاختلافات في سياسات الطاقة بين الدول، ما يؤثر على إمكانية توسيع نطاق استخدامها.

وأوصى الباحثون بإجراء مزيد من الأبحاث لتحسين تركيبات الألياف الطبيعية، واستكشاف بدائل قابلة للتحلل الحيوي لتقليل الأثر البيئي. وأكدوا أهمية إجراء تقييمات شاملة لتقنيات التحلية الشمسية لتحقيق أقصى تأثير ممكن وتلبية الاحتياجات الزائدة للمياه بشكل مستدام؛ مما يسهم في دعم الأمن المائي، وتعزيز القدرة على التكيف مع التغيرات المناخية.