الممارسات المكثفة تكيّف الدماغ ونشاطاته

حب الاطلاع والدافع الداخلي أقوى محركين تعليميين يعززان مرونته

الممارسات المكثفة تكيّف الدماغ ونشاطاته
TT

الممارسات المكثفة تكيّف الدماغ ونشاطاته

الممارسات المكثفة تكيّف الدماغ ونشاطاته

قضيت الأسبوع الماضي ثلاثة أيام في ميامي، بوصفي عضواً في مجموعة مختارة من الأفراد، تعمقنا في علم «لدونة الدماغ» brain plasticity مع ديفيد إيغلمان عالم الأعصاب والبروفسور بجامعة ستانفورد.

وقد سلطت أفكار البروفيسور إيغلمان حول كيفية عمل الدماغ البشري، الضوء على كيفية إتقان البشر لمهارات جديدة، خصوصاً العنصر المحوري فيها الذي يجعل قاعدة الـ10000 ساعة، فاعلة.

واقع الدماغ البشري

ولكن وقبل التعمق في الأمر، دعونا نستكشف كيفية عمل أدمغتنا، وما الذي يجعل هذه المعلومات مهمة.

لدى مناقشة قدرة الدماغ البشري على التكيف، وكيف أنه يشكل نفسه بناءً على ما نقضي معظم وقتنا في الاضطلاع به، طرح إيغلمان مفهوماً مثيراً؛ أن دماغنا عبارة عن عقار (قطعة أرض) مخصص. وباختصار، فإن المهام التي نخصص لها معظم الوقت ستشغل، نهاية المطاف، الحيز الأكبر في منطقة قطعة الأرض هذه من الدماغ، التي تنشأ فيها اتصالات عصبية أقوى.

واستعان إيغلمان بمثال الأخوات بولغار the Polgar sisters، ثلاث أستاذات في لعبة الشطرنج جرى تدريبهن بصرامة على يد والدهن منذ صغرهن. وهذه الممارسة المكثفة والمركزة رسخت اللعبة بعمق في عقلهن الباطن، ما يوضح كيف تتكيف «عقاراتنا العصبية» مع الأنشطة المتكررة.

ودائماً ما تلعب الجينات دوراً، ببساطة لأن هناك حاجة إلى درجة معينة من الموهبة الطبيعية لكي تبرع في أي شيء. ومع ذلك، فإن علم الأعصاب يؤكد لنا أهمية قضاء ساعات من الممارسة المتعمدة لشيء ما قبل أن نصبح خبراء فيه.

وفي المجال الرياضي، يمكن النظر إلى الأختين ويليامز في التنس. إذ إن سنوات التدريب المتفاني لهما التي أشرف عليها والدهما، وأخلاقيات العمل الدؤوبة التي تتمتع بها الشقيقتان، أسهمت في تشكيل أدمغتهما على نحو مكنهما من تقديم أداء رياضي استثنائي.

الممارسة مقابل الموهبة

ورغم أنه يستحيل أن نعرف على وجه اليقين حجم تأثير هذا النوع من الممارسة المخصصة على مستوى إتقان مهارة ما، مقارنة بتأثير الموهبة الطبيعية، فإن الطريقة التي تعمل بها أدمغتنا تثبت أن قاعدة الـ10000 ساعة 10000 -hour rule صحيحة، عندما نهدف إلى إتقان مهارة ما. (20 ساعة أسبوعياً لمدة 10 سنين).

بوجه عام، كلما زاد الوقت الذي نخصصه لشيء ما، زادت مساحة الدماغ المخصصة لهذه الممارسة أو المهمة. وكلما زادت المساحة المخصصة لشيء ما في الدماغ، زادت براعتنا في هذا الشيء المحدد. وتعكس دوائر دماغنا أنشطتنا الأكثر تكراراً، ما يجعل الممارسة المركزة ضرورية لإتقان أي مهارة.

الدافع عنصر أساسي

ومع ذلك، وفقاً لإيغلمان، فإن حجم التدريب ليس العامل الأكثر أهمية فيما يخص إتقان مهارة أو ممارسة جديدة. لذا فإن الـ10000 ساعة من التدريب ستضيع هباءً. ولجعل قاعدة الـ10000 ساعة تعمل لصالحك عليك أن تكون مندفعاً وشاعراً بأهمية الممارسة.

المقصود هنا أنه كي يتعلم دماغنا مهمة ما أو يمارسها بفاعلية، يجب أن تكون هذه المهمة ذات صلة بالشخص الذي يمارسها. من دون وجود دافع يحث على الاندفاع، فإن أدمغتنا لا تتفاعل بالطريقة نفسها. وشدد إيغلمان على أن أدمغتنا تتكيف بشكل أكثر فاعلية، عندما تكون المهام ذات معنى لنا.

ولإثبات هذه النقطة، قدم أمثلة على ممارسات مثل العلاج التقييدي، حيث يحسن المرضى عمل أطرافهم الأضعف عبر إجبارهم على استخدامها، مدفوعين في ذلك بدافع جوهري يتمثل في استعادة عمل هذه الأطراف.

وبالمثل، عندما يعاني الأشخاص من إعاقة في الرؤية في عين واحدة، غالباً ما تجري تغطية العين السليمة لإجبار العين الأضعف على العمل بجدية أكبر. ويشجع هذا الدافع القائم على القيود، الدماغ على تحسين أداء العين الأضعف، ما يوضح كيف أن الأهمية والضرورة تدفعان الدماغ إلى التكيف الفعال.

وأظهرت دراسات أجريت على الفئران، أن تعلم مهام جديدة يزداد صعوبة من دون وجود الناقل العصبي «أسيتيل كولين»، الذي يجري إطلاقه في الدماغ استجابة للأحداث ذات الصلة والمهمة التي تلفت انتباهنا. ويسلط ذلك الضوء على أنه من أجل إعادة توصيل الدماغ بشكل فعال، يجب على الدماغ أن يدرك أهمية المهمة التي بين يديه. وعليه، فإن مجرد قضاء الوقت في مهمة ما لا يكفي؛ يجب أن يجد الدماغ أن الأمر مناسب لتحفيز استجابة التعلم والتكيف بصورة حقيقية.

حب الاطلاع ومرونة الدماغ

الفضول وحب الاطلاع هما السبيل نحو بلوغ المستوى الأمثل من اللدونة للدماغ.

يركز نهج علم الأعصاب على أن التعلّم يرتكز على مدى اهتماماتنا، لذا فإن الفضول والدافع الداخلي يصبحان أقوى محركات التعلم، عندما يتعلق بمرونة أو لدونة الدماغ. وأوضح إيغلمان أنه عندما نكون مهتمين حقاً بشيء ما، تزداد قدرة أدمغتنا على التكيف، ويزيد استعدادها لاستيعاب المعلومات الجديدة.

وتشير أفكاره إلى أن الانخراط في مهام تتماشى مع اهتماماتنا يزيد من مرونة أدمغتنا، ومن ثم إمكانات التعلم لدينا.

ويعني تطبيق هذا المفهوم على التطوير المهني، أن قضاء ساعة مع مرشد حكيم يمكن أن يكون أكثر تأثيراً من ساعات لا حصر لها من الدراسة غير الموجهة. يمكن للمرشد تقديم تعليقات مستهدفة وذات صلة تتوافق مع أكثر ما نهتم به. وعبر التركيز على التحديات الهادفة، والبحث عن تعليقات وردود فعل بدافع من فضولنا، يمكننا تعظيم قوة عمليات التعلم الطبيعية في دماغنا لتحقيق نجاح أكبر.

من الممكن أن يسهم فهم أهمية التحفيز ودوره في مسألة التعلم، في تغيير الطريقة التي نتعامل بها مع مهمة إتقان مهارات جديدة. وباستطاعتنا تحقيق أقصى استفادة من مرونة أدمغتنا الرائعة عبر مواءمة جهودنا مع ما يهمنا حقاً.

وعليك التفكير في كيفية تطبيق هذه الفكرة على حياتك المهنية. ابحث عن المهام والتحديات التي تحفزك، وأحط نفسك بالأشخاص الذين يقدمون المعلومات ذات الصلة والتعليقات المفيدة، وحافظ على فضولك. عبر ذلك، ستفتح الباب أمام أفضل ما لديك من قدرات، وتجعل قاعدة الـ10000 ساعة تعمل لصالحك.

* «إنك»، خدمات «تريبيون ميديا».



نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»
TT

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

توصَّل باحثون في «مركز علوم الحياة بجامعة» فيلنيوس في ليتوانيا، إلى اكتشاف طريقة جديدة رائدة في مجال البحث الجيني تسمح بإسكات (أو إيقاف عمل) جينات معينة دون إجراء قطع دائم للحمض النووي (دي إن إيه).

وتُقدِّم الدراسة مساراً جديداً محتملاً لتعديل الجينات بشكل أكثر أماناً يشبه الضغط على زر «إيقاف مؤقت» على التعليمات الجينية داخل الخلايا.

آلية عمل نظام «كريسبر» الجديد

اكتشف فريق البروفسور باتريك باوش من معهد الشراكة لتقنيات تحرير الجينوم بمركز العلوم الحياتية في جامعة فيلنيوس بليتوانيا، بالتعاون مع خبراء دوليين في البحث المنشور في مجلة «Nature Communications» في 29 أكتوبر (تشرين الأول) 2024، نظاماً جديداً مختلفاً للتعديل الجيني.

وعلى عكس نظام «كريسبر كاس9 (CRISPR-Cas9)»، المعروف الذي اشتهر بقدرته على قطع الحمض النووي (DNA)، يعمل نظام «كريسبر» من النوع «آي في إيه» (IV-A CRISPR) بشكل مختلف، حيث يستخدم مركباً موجهاً بالحمض النووي الريبي لإسكات الجينات دون انشقاق خيوط الحمض النووي «دي إن إيه (DNA)».

كما يستخدم النظام الجديد مركباً مؤثراً يجنِّد إنزيماً يُعرف باسم «دين جي (DinG)». ويعمل هذا الإنزيم عن طريق التحرك على طول خيط الحمض النووي (DNA)، وتسهيل إسكات الجينات من خلال عملية غير جراحية.

تقنية «كريسبر-كاس9» للقص الجيني

هي أداة تعمل كمقص جزيئي لقص تسلسلات معينة من الحمض النووي (دي إن إيه). وتستخدم الحمض النووي الريبي الموجه للعثور على الحمض النووي المستهدف. و«كاس9» هو البروتين الذي يقوم بالقص، وهذا ما يسمح للعلماء بتعديل الجينات عن طريق إضافة أو إزالة أو تغيير أجزاء من الحمض النووي، وهو ما قد يساعد على علاج الأمراض الوراثية، وتعزيز الأبحاث.

** آفاق جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي

بروتينات وحلقات

يستخدم نظام «كريسبر» من النوع «IV-A» بروتينين مهمين، هما «Cas8»، و«Cas5» للعثور على بقع محددة على الحمض النووي (DNA). ويبحث هذان البروتينان عن تسلسل قصير من الحمض النووي بجوار المنطقة المستهدفة التي تتطابق مع دليل الحمض النووي الريبي. وبمجرد العثور عليه يبدآن في فك الحمض النووي وإنشاء هياكل تسمى حلقات «آر (R)».

وحلقات «آر» هي الأماكن التي يلتصق فيها الحمض النووي الريبي بخيط واحد من الحمض النووي (DNA)، وتعمل بوصفها إشارةً للنظام لبدء إيقاف أو إسكات الجين.

وكما أوضح البروفسور باوش، فإن «آر» في حلقة «R» تعني الحمض النووي الريبي. وهذه الهياكل أساسية لأنها تخبر النظام متى وأين يبدأ العمل. ولكي تكون حلقات «آر» مستقرةً وفعالةً يجب أن يتطابق الحمض النووي، ودليل الحمض النووي الريبي بشكل صحيح.

وظيفة إنزيم «دين جي»

يساعد إنزيم «DinG» نظام «كريسبر» على العمل بشكل أفضل من خلال فك خيوط الحمض النووي (DNA). وهذا يجعل من الأسهل على النظام التأثير على قسم أكبر من هذا الحمض النووي، ما يجعل عملية إسكات الجينات أكثر فعالية وتستمر لفترة أطول.

وأشار البروفسور باوش إلى أنه نظراً لأن إنزيم «DinG» يمكنه تغيير كيفية التعبير عن الجينات دون قطع الحمض النووي، فقد يؤدي ذلك إلى تطوير أدوات وراثية أكثر أماناً في المستقبل.

تطبيقات محتملة لتخفيف تلف الحمض النووي

يحمل الاكتشاف إمكانات هائلة لتحرير الجينوم والبحث في المستقبل، إذ يمكن أن تخفف الطبيعة غير القاطعة لهذه الطريقة من المخاطر المرتبطة بتلف الحمض النووي( DNA). وهو مصدر قلق عند توظيف تقنيات تحرير الجينات الحالية.

ومن خلال تمكين تعديل الجينات دون إحداث تغييرات دائمة في الحمض النووي( DNA) يمكن أن يكون هذا النهج الجديد مفيداً بشكل خاص في التطبيقات السريرية مثل العلاج الجيني للاضطرابات الوراثية. كما أن القدرة الفريدة لهذا النظام على عبور الحمض النووي دون إجراء قطع، أمر مثير للاهتمام لتطبيقات تحرير الجينات المتقدمة.

الدقة والسلامة

ويعتقد فريق البحث بأن هذه الطريقة يمكن أن تزوِّد العلماء وخبراء التكنولوجيا الحيوية بأدوات أكثر دقة لدراسة وظائف الجينات وتصحيح التشوهات الجينية بطريقة خاضعة للرقابة.

ويمثل الاكتشاف تقدماً كبيراً في مجال البحث الجيني؛ حيث يفتح نظام «كريسبر» من النوع «IV-A» آفاقاً جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي، ويمكن أن تحدث هذه الطريقة ثورةً في كيفية دراسة الأمراض الوراثية وعلاجها، مع التركيز على الدقة والسلامة.