آلية فريدة يستخدمها ميكروب لإنتاج الميثان

تعميمها يزيد الإنتاج بتكلفة أقل وأمان أكبر

آلية فريدة يستخدمها ميكروب لإنتاج الميثان
TT

آلية فريدة يستخدمها ميكروب لإنتاج الميثان

آلية فريدة يستخدمها ميكروب لإنتاج الميثان

اكتشف علماء معهد «ماكس بلانك» لعلم الأحياء الدقيقة البحرية في بريمن بألمانيا، الأسرار الجزيئية لميكروب يولد الميثان، وهو اكتشاف من شأنه أن يفتح فرصاً مثيرة في إنتاج الوقود الحيوي.

والاكتشاف يتعلق بالآلية التي يستخدمها أحد ميكروبات «الميثانوجينات»، التي تنتج نصف غاز ميثان العالم، في الحصول على الكبريت.

تدريب الميكروبات

الكبريت عنصر أساسي في الحياة وتحتاجه جميع الكائنات الحية، وتكتسبه المواد ذاتية التغذية، مثل النباتات والطحالب، عن طريق تحويل الكبريتات إلى كبريتيد، ومع ذلك تتطلب هذه العملية الكثير من الطاقة، وتنتج مواد وسيطة ونواتج ثانوية ضارة، لذلك كان يُعتقد سابقاً أن «الميثانوجينات» المنتجة للميثان، التي عادة ما تفتقر إلى الطاقة، لن تكون قادرة على تحويل الكبريتات إلى كبريتيد، لذلك كان هناك اعتقاد أن هذه الميكروبات تعتمد على أشكال أخرى من الكبريت.

تم كسر هذه الاعتقاد عام 1986 باكتشاف أحد ميكروبات الميثانوجين، وهو «ميثانثرموكوكس ثيرموليثوتروبيكوس Methanothermococcus thermolithotrophicus»، الذي ينمو على الكبريتات كمصدر وحيد للكبريت، فكيف يكون هذا ممكناً، مع الأخذ في الاعتبار تكاليف الطاقة، ولماذا هذا الميكروب هو «الميثانوجين» الوحيد الذي يبدو أنه قادر على النمو على هذا النوع من الكبريت؟ وهل يستخدم هذا الكائن الحي حيلاً كيميائية أو استراتيجية غير معروفة حتى الآن للسماح بامتصاص الكبريتات؟

عثرت ماريون جيسبرسن وتريستان واغنر من معهد «ماكس بلانك» على إجابات لهذه الأسئلة وتم نشرها 5 يونيو (حزيران) في مجلة «نيتشر ميكروبيولوجي».

كان التحدي الأول الذي واجهه الباحثون هو جعل الميكروب ينمو على مصدر جديد للكبريت، فكان على الفريق البحثي تدريب ميكروب «ميثانثرموكوكس ثيرموليثوتروبيكوس» على تناول الكبريتات بدلاً من الكبريتيد، وبعد عدة تجارب لتحسين وسط التغذية، أصبح الميكروب محترفاً في النمو على الكبريتات، مع كثافة خلايا مماثلة للميكروبات التي تنمو على الكبريتيد.

تقول جيسبرسن في تقرير نشره الموقع الإلكتروني للمعهد، بالتزامن مع الدراسة: «أصبحت الأمور مثيرة حقاً عندما قمنا بقياس اختفاء الكبريتات مع نمو الكائن الحي، وسمح للباحثين بزراعة الميكروب بأمان في المفاعلات الحيوية على نطاقات كبيرة، حيث لم يعودوا يعتمدون على غاز كبريتيد الهيدروجين السام والمتفجر للنمو، وأصبح الباحثون الآن مستعدين للبحث في تفاصيل العمليات الأساسية».

أول تشريح جزيئي

لفهم الآليات الجزيئية لاستيعاب الكبريتات، قام العلماء بتحليل جينوم الميكروب، فوجدوا خمسة جينات لديها القدرة على ترميز الإنزيمات المرتبطة بتقليل الكبريتات. يقول تريستان واغنر، رئيس مجموعة «ماكس بلانك» للأبحاث، والباحث المشارك بالدراسة: «تمكنا من تمييز كل واحد من هذه الإنزيمات، واكتشفنا المسار الكامل».

من خلال توصيف الإنزيمات واحداً تلو الآخر، قام العلماء بتجميع أول مسار لامتصاص الكبريتات، وفي حين أن أول إنزيمين للمسار معروفان جيداً ويحدثان في كثير من الميكروبات والنباتات، فإن الإنزيمات الأخرى كانت من نوع جديد.

تقول جيسبرسن: «أذهلنا أن نرى أنه يبدو كما لو أن ميكروب (ميثانثرموكوكس ثيرموليثوتروبيكوس)، اختطف إنزيماً واحداً من كائن حي مخفض للكبريتات، وقام بتعديله بشكل طفيف لتلبية احتياجاته الخاصة».

وفي حين أن بعض الميكروبات تستوعب الكبريتات كوحدة بناء خلوية، يستخدمها البعض الآخر للحصول على الطاقة في عملية تبديد، كما يفعل البشر عند تنفس الأكسجين، تستخدم الميكروبات التي تؤدي اختزال الكبريتات مجموعة مختلفة من الإنزيمات للقيام بذلك. تقول جيسبرسن: «الميثانوجين الذي تمت دراسته هنا قام بتحويل أحد هذه الإنزيمات التبادلية إلى إنزيمات تمثيلية، وهي استراتيجية بسيطة لكنها فعالة للغاية، وعلى الأرجح هي السبب وراء قدرة هذا الميثانوجين على النمو على الكبريتات، وحتى الآن تم العثور على هذا الإنزيم فقط في ميكروب (ميثانثرموكوكس ثيرموليثوتروبيكوس)، وليس في أي ميثانوجين آخر».

ومع ذلك، يحتاج هذا الميكروب الفريد أيضا، للتعامل مع اثنين من السموم التي يتم إنشاؤها أثناء استيعاب الكبريتات، وهذا ما صُنع من أجله آخر إنزيمين في المسار، الأول الذي يشبه مرة أخرى إنزيما مغايرا، يولد الكبريتيد من الكبريتيت، والنوع الثاني هو نوع جديد من الفوسفاتيز له كفاءة قوية لتحليل السم الآخر المائي، والمعروف باسم PAP.

يقول فاغنر: «يبدو أن (ميثانثرموكوكس ثيرموليثوتروبيكوس) جمعت معلومات وراثية من بيئتها الميكروبية التي مكنتها من النمو على الكبريتات، ومن خلال مزج ومطابقة إنزيمات الاستيعاب والمباعدة، ابتكرت آلية وظيفية خاصة بها لخفض الكبريتات».

من خلال ما سبق، فإن الميكروب (ميثانثرموكوكس ثيرموليثوتروبيكوس) لديه قدرة مذهلة على تحويل الهيدروجين، وثاني أكسيد الكربون إلى ميثان، وبمعنى آخر يمكنه تحويل غاز الدفيئة (ثاني أكسيد الكربون) إلى وقود حيوي (الميثان)، والذي يمكن استخدامه، على سبيل المثال، لتدفئة منازلنا.

ويضيف فاغنر: «حتى تقوم ميكروبات الميثانوجينات الأخرى بهذه العملية، تزرع في مفاعلات حيوية كبيرة، والعقبة الحالية في زراعة الميثانوجينات هي حاجتها إلى غاز (كبريتيد الهيدروجين) شديد الخطورة والمتفجر كمصدر للكبريت، ومع اكتشاف مسار امتصاص الكبريتات في ميكروب (ميثانثرموكوكس ثيرموليثوتروبيكوس)، فمن الممكن هندسة الميثانوجينات المستخدمة بالفعل في التكنولوجيا الحيوية لاستخدام هذا المسار بدلا من ذلك، ما يؤدي إلى إنتاج غاز حيوي أكثر أمانا وفاعلية من حيث التكلفة».


مقالات ذات صلة

الثقافات المصرية تحصد تفاعلاً في «حديقة السويدي» بالرياض

يوميات الشرق الفعاليات تنوّعت ما بين مختلف الثقافات المصرية (الشرق الأوسط)

الثقافات المصرية تحصد تفاعلاً في «حديقة السويدي» بالرياض

شهدت فعاليات «أيام مصر» في «حديقة السويدي» بالعاصمة السعودية الرياض، حضوراً واسعاً وتفاعلاً من المقيمين المصريين في السعودية.

«الشرق الأوسط» (الرياض)
شمال افريقيا محاكمة سابقة لمتهمين من «الإخوان» في أحداث عنف بمصر (أ.ف.ب)

مصر: ترحيب الأزهر باستبعاد المئات من «قوائم الإرهابيين» يثير تفاعلاً على مواقع التواصل

أثار ترحيب الأزهر باستبعاد المئات من «قوائم الإرهابيين» في مصر تفاعلاً «سوشيالياً»، امتزج بحالة من الجدل المستمر بشأن القرار.

فتحية الدخاخني (القاهرة)
شمال افريقيا عمليات إنقاذ الناجين من المركب السياحي «سي ستوري» (المتحدث العسكري المصري)

مصر: العثور على 5 أحياء وانتشال 4 جثث من ضحايا المركب السياحي

نجحت السلطات المصرية، الثلاثاء، في العثور على 5 أحياء وانتشال 4 جثث من ضحايا غرق المركب السياحي «سي ستوري»، في الحادث الذي وقع قبالة سواحل البحر الأحمر.

محمد عجم (القاهرة)
رياضة عربية اللاعب المصري السابق محمد زيدان تحدث عن رفضه المراهنات (يوتيوب)

النجم المصري السابق محمد زيدان يفجِّر جدلاً بشأن «المراهنات»

فجَّر المصري محمد زيدان -اللاعب السابق بمنتخب مصر لكرة القدم، والذي كان محترفاً في الخارج- جدلاً بشأن المراهنات، بعد قيامه بدعاية لإحدى الشركات.

محمد الكفراوي (القاهرة )
شمال افريقيا حطام الباخرة «سالم إكسبريس» في مياه البحر الأحمر (المصدر: مجموعة «DIVING LOVERS» على موقع «فيسبوك»)

أبرز حوادث الغرق المصرية في البحر الأحمر

شهد البحر الأحمر على مدار السنوات الماضية حوادث غرق كثيرة، طالت مراكب سياحية وعبّارات، وخلَّفت خسائر كبيرة.

«الشرق الأوسط» (القاهرة)

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»
TT

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

نظام «كريسبر» جديد لإسكات الجينات بدلاً من «قصّها»

توصَّل باحثون في «مركز علوم الحياة بجامعة» فيلنيوس في ليتوانيا، إلى اكتشاف طريقة جديدة رائدة في مجال البحث الجيني تسمح بإسكات (أو إيقاف عمل) جينات معينة دون إجراء قطع دائم للحمض النووي (دي إن إيه).

وتُقدِّم الدراسة مساراً جديداً محتملاً لتعديل الجينات بشكل أكثر أماناً يشبه الضغط على زر «إيقاف مؤقت» على التعليمات الجينية داخل الخلايا.

آلية عمل نظام «كريسبر» الجديد

اكتشف فريق البروفسور باتريك باوش من معهد الشراكة لتقنيات تحرير الجينوم بمركز العلوم الحياتية في جامعة فيلنيوس بليتوانيا، بالتعاون مع خبراء دوليين في البحث المنشور في مجلة «Nature Communications» في 29 أكتوبر (تشرين الأول) 2024، نظاماً جديداً مختلفاً للتعديل الجيني.

وعلى عكس نظام «كريسبر كاس9 (CRISPR-Cas9)»، المعروف الذي اشتهر بقدرته على قطع الحمض النووي (DNA)، يعمل نظام «كريسبر» من النوع «آي في إيه» (IV-A CRISPR) بشكل مختلف، حيث يستخدم مركباً موجهاً بالحمض النووي الريبي لإسكات الجينات دون انشقاق خيوط الحمض النووي «دي إن إيه (DNA)».

كما يستخدم النظام الجديد مركباً مؤثراً يجنِّد إنزيماً يُعرف باسم «دين جي (DinG)». ويعمل هذا الإنزيم عن طريق التحرك على طول خيط الحمض النووي (DNA)، وتسهيل إسكات الجينات من خلال عملية غير جراحية.

تقنية «كريسبر-كاس9» للقص الجيني

هي أداة تعمل كمقص جزيئي لقص تسلسلات معينة من الحمض النووي (دي إن إيه). وتستخدم الحمض النووي الريبي الموجه للعثور على الحمض النووي المستهدف. و«كاس9» هو البروتين الذي يقوم بالقص، وهذا ما يسمح للعلماء بتعديل الجينات عن طريق إضافة أو إزالة أو تغيير أجزاء من الحمض النووي، وهو ما قد يساعد على علاج الأمراض الوراثية، وتعزيز الأبحاث.

** آفاق جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي

بروتينات وحلقات

يستخدم نظام «كريسبر» من النوع «IV-A» بروتينين مهمين، هما «Cas8»، و«Cas5» للعثور على بقع محددة على الحمض النووي (DNA). ويبحث هذان البروتينان عن تسلسل قصير من الحمض النووي بجوار المنطقة المستهدفة التي تتطابق مع دليل الحمض النووي الريبي. وبمجرد العثور عليه يبدآن في فك الحمض النووي وإنشاء هياكل تسمى حلقات «آر (R)».

وحلقات «آر» هي الأماكن التي يلتصق فيها الحمض النووي الريبي بخيط واحد من الحمض النووي (DNA)، وتعمل بوصفها إشارةً للنظام لبدء إيقاف أو إسكات الجين.

وكما أوضح البروفسور باوش، فإن «آر» في حلقة «R» تعني الحمض النووي الريبي. وهذه الهياكل أساسية لأنها تخبر النظام متى وأين يبدأ العمل. ولكي تكون حلقات «آر» مستقرةً وفعالةً يجب أن يتطابق الحمض النووي، ودليل الحمض النووي الريبي بشكل صحيح.

وظيفة إنزيم «دين جي»

يساعد إنزيم «DinG» نظام «كريسبر» على العمل بشكل أفضل من خلال فك خيوط الحمض النووي (DNA). وهذا يجعل من الأسهل على النظام التأثير على قسم أكبر من هذا الحمض النووي، ما يجعل عملية إسكات الجينات أكثر فعالية وتستمر لفترة أطول.

وأشار البروفسور باوش إلى أنه نظراً لأن إنزيم «DinG» يمكنه تغيير كيفية التعبير عن الجينات دون قطع الحمض النووي، فقد يؤدي ذلك إلى تطوير أدوات وراثية أكثر أماناً في المستقبل.

تطبيقات محتملة لتخفيف تلف الحمض النووي

يحمل الاكتشاف إمكانات هائلة لتحرير الجينوم والبحث في المستقبل، إذ يمكن أن تخفف الطبيعة غير القاطعة لهذه الطريقة من المخاطر المرتبطة بتلف الحمض النووي( DNA). وهو مصدر قلق عند توظيف تقنيات تحرير الجينات الحالية.

ومن خلال تمكين تعديل الجينات دون إحداث تغييرات دائمة في الحمض النووي( DNA) يمكن أن يكون هذا النهج الجديد مفيداً بشكل خاص في التطبيقات السريرية مثل العلاج الجيني للاضطرابات الوراثية. كما أن القدرة الفريدة لهذا النظام على عبور الحمض النووي دون إجراء قطع، أمر مثير للاهتمام لتطبيقات تحرير الجينات المتقدمة.

الدقة والسلامة

ويعتقد فريق البحث بأن هذه الطريقة يمكن أن تزوِّد العلماء وخبراء التكنولوجيا الحيوية بأدوات أكثر دقة لدراسة وظائف الجينات وتصحيح التشوهات الجينية بطريقة خاضعة للرقابة.

ويمثل الاكتشاف تقدماً كبيراً في مجال البحث الجيني؛ حيث يفتح نظام «كريسبر» من النوع «IV-A» آفاقاً جديدة لتعديل الجينات بشكل أكثر أماناً وغير جراحي، ويمكن أن تحدث هذه الطريقة ثورةً في كيفية دراسة الأمراض الوراثية وعلاجها، مع التركيز على الدقة والسلامة.