تقنيات متطورة للتعرف على الوجوه

تصمم بنظم الذكاء الصناعي والتعلم العميق وتوظّف في استخدامات أمنية وطبية وتجارية

تطور كبير في تقنيات التعرف على الوجوه مع مرور الزمن
تطور كبير في تقنيات التعرف على الوجوه مع مرور الزمن
TT

تقنيات متطورة للتعرف على الوجوه

تطور كبير في تقنيات التعرف على الوجوه مع مرور الزمن
تطور كبير في تقنيات التعرف على الوجوه مع مرور الزمن

بعد بدء انتشار تقنيات التزييف العميق DeepFake في العام 2019 بدأت المخاوف تزداد حول تقنيات التعرف على الوجه والآفاق الضارة التي يمكن استخدامها فيها. وعلى الرغم من وجود هذه التقنية في الكثير من الهواتف الجوالة والكومبيوترات المحمولة، فإننا سنركز على الجانب الذي يتطلب تحليلا لملايين الصور والذي يُعتبر أكثر تقدما ويقدم نتائج أكثر دقة.
تحليل الوجه
> ما هي تقنيات التعرف على الوجه؟
تعمل تقنيات التعرف على الوجه بتحليل الوجه البشري في الصور، ومن ثم تحويل ذلك إلى بيانات رقمية وفقا لمزايا موجودة في كل وجه (مثل المسافة بين العينين، وطول الأنف، وشكل محيط الشفاه، وتباعد الأذنين وعرض الذقن، وغيرها)، ومن ثم مطابقة الوجه مع صورة لصاحب الجهاز إن كان فردا، أو مع صور في قاعدة بيانات للوجوه في القطاعات الأخرى. ويمكن استخدام هذه التقنية للتعرف على شخصية صاحب الوجه أو للتأكد من أنه يمتلك الصلاحيات الكافية للدخول إلى موقع ما أو استخدام جهاز ما. وتتم هذه العملية في أجزاء من الثانية، وصولا إلى بضع ثوان وفقا لدرجة التحليل التي يقوم بها النظام.
ولكن لمَ انتشرت هذه التقنية أكثر من تقنيات التعرف الأخرى، مثل بصمة العين والإصبع ونبرة الصوت، وغيرها؟ يعود السبب إلى سهولة قراءة بيانات الوجه عن بُعد مقارنة ببصمة العين أو الإصبع، ناهيك عن الضجيج المصاحب للتعرف على نبرة الصوت في المناطق العامة، وسهولة تغيّر هذه العوامل، مثل احتراق بصمة إصبع المستخدم، أو إصابته بالزكام أو وجود فيروس أدى إلى حدوث التهاب في العين، وغيرها. ومن السهل استخدام هذه التقنية لمراقبة المشاة والتعرف على زوار المتاجر بسهولة، وخصوصا في حالات الاعتداءات أو السرقة مقارنة بضرورة وجود المجرم بالقرب من جهاز ما للتعرف على بصمة إصبعه أو عينه أو نبرة صوته.
تطور التقنية
ويعمل الكثير من كبرى الشركات على أبحاث في هذا المجال وتنشر اكتشافاتها النظرية فيما يتعلق بتحليل الذكاء الصناعي لهذه البيانات وتحليل الصور والوجوه، ومن بينها «مايكروسوفت» و«آبل» و«فيسبوك» و«غوغل». واستطاعت خوارزمية (الخوارزمية هي نهج عمل برنامج ما لتحقيق الهدف المرغوب) GaussianFace التي طورها باحثون في جامعة هونغ كونغ الصينية في العام 2014 التفوق على قدرات التعرف البشرية، حيث استطاع النظام النجاح بالتعرف على الوجوه بنسبة 98.52 في المائة مقارنة بـ97.53 في المائة للتعرف البشري. واستطاعت «غوغل» في العام 2015 تحقيق نسبة 99.63 في المائة من التعرف الصحيح على الوجوه بعد مقارنتها بعدة صور وربط صاحب الصورة بصوره الأخرى، وهي تقنية تستخدمها الشركة في تطبيق Google Photos للصور في هواتفها الجوالة لفرزها وترتيبها وفقا للأشخاص الموجودين فيها.
وفي العام 2018، نشرت دائرة التقنية والعلوم التابعة لمركز الأمن القومي الأميركية نتائج اختبارات لـ12 تقنية للتعرف على الوجه، حصل أعلاها على نسبة 99.44 في المائة في أقل من 5 ثوان. وتم تطوير هذه التقنيات لدرجة أعلى، حيث بات بإمكانها التعرف على مشاعر صاحب الوجه من صورة ثابتة له، وتحديد ما إذا كان سعيدا أم غاضبا أم مضطربا أم حزينا أم خائفا، وغيرها من المشاعر الأخرى.
ولكن جميع هذه التقنيات تشترك باستخدامها لتقنيات الذكاء الصناعي والتعلم العميق من البيانات الواردة له. وينجم عن استخدام الذكاء الصناعي التقدم المستمر مع مرور الوقت وازدياد حجم عينة الصور التي تيم مطابقتها، حيث يتعلم الذكاء الصناعي من الأخطاء التي يرتكبها والتي يصححها له البشر، ومن النجاحات التي يقوم بها التي تعزز من إدراكه لآلية التحليل الصحيحة في كل حالة، مثل اختلاف تحليل وجوه السيدات عن الرجال، وأصحاب البشرة الداكنة مقارنة بالبشرة الفاتحة، وتقارب وجوه سكان جنوب شرقي آسيا من حيث الملامح، وتغير كمية الدهون الموجودة في وجوه المستخدمين بعد اكتساب أو فقدان الوزن، وغيرها من العوامل والمتغيرات الأخرى.
ونجم عن ذلك أن جميع الخوارزميات المستخدمة في الفترة بين 2013 و2018 كانت ذات نتائج أفضل مقارنة بخوارزميات الفترة الممتدة بين 2010 و2013. وللمقارنة، وجد تقرير للهيئة الوطنية الأميركية للمعايير والتقنية NIST صدر في العام 2018 بأن 0.2 في المائة من البحث من قاعدة بيانات يبلغ حجمها 26.6 مليون صورة كانت خاطئة، مقارنة بنسبة 4 في المائة في العام 2014 أي أن نسبة النجاح والتقدم قد ازدادت بنحو 20 ضعفا في 4 أعوام فقط.
استخدامات متنوعة
ويُتوقع أن يصل حجم سوق تقنيات التعرف على الوجوه إلى 7 مليارات دولار في العام 2024، وبنسبة نمو تبلغ 16 في المائة في الفترة بين عامي 2019 و2024. وللمقارنة، فإن حجم هذا السوق في العام الماضي كان 3.2 مليار دولار. وتتمحور كبرى الاستخدامات لهذه التقنية في المراقبة الأمنية للقطاع العام، مثل إصدار الوثائق الثبوتية، والحدود بين الدول، ودوريات الشرطة الأمنية، وللتعرف على هوية مرتكبي الحوادث الإجرامية والإرهابية من التسجيلات أو الصور الملتقطة. كما يمكن استخدامها في الطائرات المُسيّرة ذاتية القيادة Drones التي تستطيع حمل كاميرات بوزن 10 كيلوغرامات والتعرف على المشتبه بهم في التجمعات الكبيرة من مسافات تصل إلى 800 متر بعيدا عنهم وارتفاع 100 متر ومن زوايا مختلفة. ويمكن ربط هذه الطائرة المُسيّرة بكابل متصل بمصدر للطاقة على الأرض لتعمل لفترات طويلة جدا، مع نقلها للبيانات عبر كابلات متصلة بكومبيوترات على الأرض لحماية البيانات وضمان عدم اختراقها.
وبالحديث عن الأمن، فإن الصين تقود الدول التي تراقب المارة والمشاة باستخدام 200 مليون كاميرا مراقبة في العام 2018، مع خطتها لرفع العدد ليصل إلى 626 مليونا في العام 2020. ويبلغ معدل الكاميرات لكل ألف شخص في مدينة تشونغكنغ الصينية 168، بينما يبلغ العدد 68 لكل ألف شخص في لندن (الترتيب السادس)، وينخفض إلى 16 لكل ألف شخص في مدينة أتلانتا الأميركية (الترتيب العاشر). وتجدر الإشارة إلى أن 8 مدن من أصل أكثر 10 مدن استخداما لكاميرات المراقبة هي مدن صينية، إضافة إلى المدينتين المذكورتين. وثبتت مدينة موسكو 200 مليون كاميرا بنهاية العام 2019 تستطيع التعرف على وجوه المارة لرفع مستويات الأمن العام.
ويمكن أن يستفيد القطاع الصحي من هذه التقنيات من خلال تحليل وجه المستخدم والتعرف على تطور حالته المرضية أو تعافيه منها وفقا لملامح وجهه في الأمراض التي تظهر علاماتها على وجه المستخدم، إلى جانب قدرتها على التعرف على بعض الأمراض الجينية، واستخدامها خلال التخدير الموضعي في العمليات الجراحية للتعرف على حالة المريض وشعوره بالألم وتغيير جرعة المخدر فورا وفقا لتحليل النظام، وخصوصا لمرضى القلب الذين لا يمكنهم الحصول على جرعات كبيرة من المخدر.
ويمكن للمتاجر الاستفادة من هذه التقنيات بتحليل وجوه ومشاعر المستخدمين لدى المرور أمام منتجات معينة للتعرف ما إذا كانت تعجبهم أم لا، أو لتحديد هوية الزوار ومقارنتها بمن لديهم سجل إجرامي في سرقة المتاجر، وإخطار فريق الأمن في ذلك المتجر لمراقبة أولئك الزوار أكثر من غيرهم. كما يمكن استخدام هذه التقنية للتعرف على المنتجات التي تفضلها مجموعات مختلفة من المستخدمين، وفقا لجنسهم أو عمرهم أو عِرقهم، وذلك لتطوير ما يقدمه المتجر بشكل أفضل.
وسيتم استخدام هذه التقنيات في أولمبياد طوكيو هذا العام للتعرف على وجوه الناس والسماح لهم بالدخول إلى المناطق المرغوبة وفقا لتذاكرهم، وذلك لتسهيل مرورهم ورفع مستويات الأمان. وتقوم مدينة سيدني الأسترالية باختبار هذه التقنية في مطاراتها لتسريع مرور المسافرين عبر نقاط التفتيش الأمني.
مخاوف على الخصوصية
وفي ظل تقدم التقنية وجمع الحكومات لصور مواطنيها وزوارها، ووجود هجمات أمنية مستمرة على أجهزة القطاع الحكومي حول العالم، بدأت مخاوف الناس تتزايد حول إمكانية سرقة بياناتهم الحيوية التي تشمل بصمة وجههم، واستخدامها في سبل غير مشروعة التي قد تشمل تزييف الجرائم وربطها بأشخاص أبرياء.
وتمنع دول الاتحاد الأوروبي جمع المعلومات المرتبطة بالناس (بما في ذلك بصمة وجههم) والتحقيق في أمورهم الشخصية أو سفرهم دون الحصول على موافقتهم، وتعتبر ذلك خرقا لخصوصيتهم، مع منع السويد لاستخدام هذه التقنية في المدارس وتغريم من لا يمتثل منها. وفي الولايات المتحدة، تمنع 4 ولايات جمع البيانات الحيوية (واشنطن وتكساس وإلينوي وكاليفورنيا). ومن جهتها منعت مدينة سان فرنسيسكو استخدام تقنيات التعرف على الوجه على جميع المؤسسات الحكومية، إضافة إلى مدن سان دييغو وأوكلاند وسومرفيل، مع دراسة مدينة بورتلاند لمنع هذه التقنية أيضا في العام 2020، وقد تُوسّع نطاق المنع ليشمل المتاجر الخاصة وشركات الطيران ومواقع الفعاليات.

خداع تقنية التعرف على الوجوه
> انطلاقا من خوف المستخدمين على خصوصيتهم، استطاع شاب روسي تطوير خوارزمية تقترح وضع مساحيق التجميل بطرق وأنماط معينة تستطيع خداع خوارزميات التعرف على الوجه، ولكنه لم ينشرها حتى لا يستخدمها المجرمون. كما وطور شاب ألماني جهازا يستطيع حياكة أنسجة لارتدائها على الوجه بهدف خداع نظم المراقبة، مثل وضع شال يغطي الفم يحتوي على رسومات لعيني وشفاه. وكشفت مجلة «فوربس» عن وجود قدرة على إجراء تعديلات بسيطة على مربعات Pixel في الصور لخداع نظم المراقبة لا يمكن تحديدها بالعين البشرية ولكنها مربكة للخوارزميات.
ولتجاوز هذه الاختراقات، يعمل قطاع التعرف على الوجه على تطوير آلية لحماية النظم، والتي تشمل التأكد من أن صورة المستخدم مأخوذة وهو موجود أمام الكاميرا في تلك اللحظة، وليس من خلال صورة مطبوعة أو قناع، والتأكد من عدم دمج أجزاء من صور لأفراد مختلفين لإيجاد صورة جديدة لشخص وهمي، وخصوصا في صور جوازات السفر. ولكن الحل المثالي قد يكون باستخدام نظام هجين لا يعتمد على تقنيات التعرف على الوجه فقط، بل على مجموعة من العوامل، مثل الوجه وبصمة الإصبع وتسلسل إدخاله للمعلومات أو الإجابة عن سلسلة من الأسئلة بطريقته الفريدة، أو استخدام عنوانه في الإنترنت IP وموقعه الجغرافي (مثلما تقوم به شركات البطاقات الائتمانية لدى استخدام البطاقة في دولة جديدة ذات نسبة عالية في سرقة البطاقات أو بياناتها).



«مدمّر ستارلينك» المحتمل... خطوة تقنية صينية تفتح الباب أمام تعطيل الأقمار الاصطناعية

صورة مركبة لنموذج قمر اصطناعي مع خلفية لكوكب الأرض (رويترز)
صورة مركبة لنموذج قمر اصطناعي مع خلفية لكوكب الأرض (رويترز)
TT

«مدمّر ستارلينك» المحتمل... خطوة تقنية صينية تفتح الباب أمام تعطيل الأقمار الاصطناعية

صورة مركبة لنموذج قمر اصطناعي مع خلفية لكوكب الأرض (رويترز)
صورة مركبة لنموذج قمر اصطناعي مع خلفية لكوكب الأرض (رويترز)

طوّر علماء صينيون مولّد طاقة فائق القوة وصغير الحجم، في خطوة تمهّد الطريق لتطوير أسلحة من الجيل القادم قد تُستخدم يوماً ما ضد أسراب الأقمار الاصطناعية، مثل كوكبة «ستارلينك» التابعة لشركة «سبيس إكس»، وذلك وفقاً لما أوردته صحيفة «إندبندنت».

وخلال السنوات الأخيرة، اكتسبت أسلحة الموجات الدقيقة عالية الطاقة اهتماماً متزايداً بوصفها بديلاً منخفض التكلفة للصواريخ والبنادق التقليدية، نظراً لقدرتها شبه غير المحدودة على إطلاق النبضات.

وفي هذا السياق، يُجري باحثون في الولايات المتحدة، وروسيا، والصين على وجه الخصوص، دراسات مكثفة حول إمكانية تطوير هذه التقنية إلى أسلحة طاقة موجهة قادرة على تعطيل الأقمار الاصطناعية.

ويُعدّ تدمير قمر اصطناعي في الفضاء مهمة بالغة التعقيد، إذ من المرجح أن تُخلّف الأسلحة التقليدية كميات كبيرة من الحطام المداري، ما قد يؤدي إلى عواقب غير متوقعة، بما في ذلك تهديد الأقمار الاصطناعية التابعة للدولة المنفذة نفسها.

ومن الناحية النظرية، يمكن لأسلحة الموجات الدقيقة تعطيل الأقمار الاصطناعية مع توليد قدر محدود من الحطام، فضلاً عن إتاحة قدر من «الإنكار المعقول»، وهو ما يمنحها ميزة استراتيجية واضحة.

وتعتمد هذه الأسلحة على مبدأ تخزين الطاقة الكهربائية ثم إطلاقها دفعة واحدة على شكل نبضة قوية، على غرار آلية عمل ملف تسلا.

وتُستخدم هذه النبضة الهائلة من الطاقة في تشغيل مولدات الموجات الدقيقة، التي تعمل بدورها على تعطيل الأنظمة، والأجهزة الإلكترونية.

شاشة تظهر إيلون ماسك وشعار شركة «ستارلينك» (رويترز)

وحتى وقت قريب، كانت غالبية النماذج الأولية لهذه المولدات النبضية ضخمة الحجم، إذ بلغ طولها 10 أمتار على الأقل، ووزنها أكثر من 10 أطنان، ما جعل دمجها في أنظمة الأسلحة الصغيرة أو المتحركة أمراً بالغ الصعوبة.

غير أنّ دراسة حديثة أجراها علماء صينيون من معهد شمال غربي الصين للتكنولوجيا النووية (NINT) أظهرت تقدماً ملحوظاً في هذا المجال، حيث استخدم الباحثون مادة عازلة سائلة خاصة تُعرف باسم «ميدل 7131»، ما أتاح تحقيق كثافة أعلى لتخزين الطاقة، وعزلاً أكثر قوة، وتقليلاً لفقدان الطاقة، وأسهم في تصميم جهاز أصغر حجماً، وأكثر كفاءة.

وكتب العلماء في الدراسة المنشورة: «من خلال استخدام مادة عازلة سائلة عالية الكثافة للطاقة تُعرف باسم (ميدل 7131)، إلى جانب خط تشكيل نبضات مزدوج العرض، تمكنت الدراسة من تصغير حجم محول تسلا المتكامل، ونظام تشكيل النبضات».

وبحسب الدراسة، يبلغ طول الجهاز الجديد أربعة أمتار فقط (13 قدماً)، ويزن خمسة أطنان، ما يجعله أول جهاز تشغيل صغير الحجم في العالم لسلاح الميكروويف عالي الطاقة.

ويُعرف هذا الجهاز باسم TPG1000Cs، وهو صغير بما يكفي ليُثبت على الشاحنات، والطائرات، بل وحتى على أقمار اصطناعية أخرى، وفقاً لما أفاد به الباحثون.

وأشار الباحثون إلى أن «النظام أظهر استقراراً في التشغيل لمدة دقيقة واحدة متواصلة، حيث جُمعت نحو 200 ألف نبضة بأداء ثابت».

ويؤكد خبراء أن سلاح ميكروويف أرضياً بقدرة تتجاوز 1 غيغاواط (GW) سيكون قادراً على تعطيل وتدمير آلية عمل أقمار «ستارلينك» الاصطناعية في مدارها بشكل كبير.

وذكر الباحثون، بحسب ما نقلته صحيفة «ساوث تشاينا مورنينغ بوست»، أن جهاز TPG1000Cs قادر على توليد نبضات كهربائية فائقة القوة تصل إلى 20 غيغاواط.

وتأتي هذه التطورات في وقت نشرت فيه الصين عدداً من الدراسات التي تشدد على ضرورة إيجاد وسائل فعالة لتعطيل أقمار «ستارلينك» الاصطناعية التابعة لرجل الأعمال إيلون ماسك.


الذكاء الاصطناعي السيادي… نهاية السحابة أم بداية نموذج مزدوج؟

يتحوّل النقاش في عصر الذكاء الاصطناعي من التطبيقات إلى البنية التحتية ومن يملكها وكيف تُدار (أدوبي)
يتحوّل النقاش في عصر الذكاء الاصطناعي من التطبيقات إلى البنية التحتية ومن يملكها وكيف تُدار (أدوبي)
TT

الذكاء الاصطناعي السيادي… نهاية السحابة أم بداية نموذج مزدوج؟

يتحوّل النقاش في عصر الذكاء الاصطناعي من التطبيقات إلى البنية التحتية ومن يملكها وكيف تُدار (أدوبي)
يتحوّل النقاش في عصر الذكاء الاصطناعي من التطبيقات إلى البنية التحتية ومن يملكها وكيف تُدار (أدوبي)

لم يعد الذكاء الاصطناعي مجرّد قصة برمجيات. فمع تسارع الحكومات في تنفيذ استراتيجياتها الرقمية، واندماج تقنيات الذكاء الاصطناعي التوليدي في صلب العمليات المؤسسية، يتحوّل النقاش من التطبيقات إلى البنية التحتية، تحديداً من يملكها وأين تُدار وكيف تُبنى. فالمفهوم الذي يتصدر هذا الجدل اليوم هو «السيادة».

غير أن السيادة في سياق الذكاء الاصطناعي ليست مجرد شعار جيوسياسي، بل تعكس تحوّلاً بنيوياً في فهم الدول والشركات لمخاطر المرحلة الجديدة، خصوصاً في عصر النماذج اللغوية الكبرى.

فالحوسبة السحابية التقليدية أثارت مخاوف تتعلق بالخصوصية والأمن السيبراني. أما الذكاء الاصطناعي التوليدي فقد أضاف بُعداً مختلفاً. إذاً ماذا يحدث عندما تتعلّم النماذج من بيانات حساسة بطرق يصعب عكسها؟

يجيب سامي عيسى، الرئيس التنفيذي لشركة «غلوبال إيه آي»، بأنه «لا يوجد في عالم الذكاء الاصطناعي ما يُسمى بالحق في النسيان. إذا تعلّم نموذج لغوي أسرار نموذج عملي التجاري، فمن شبه المستحيل إقناعه بإلغاء ما تعلّمه». ويشير خلال لقاء خاص مع «الشرق الأوسط» إلى أن الفارق بين تخزين البيانات وترميزها داخل أوزان النموذج «هو ما يدفع باتجاه مفهوم الذكاء الاصطناعي السيادي».

سامي عيسى الرئيس التنفيذي لشركة «غلوبال إيه آي»

السيادة بالهندسة المعمارية

يمكن النظر إلى السيادة من زاويتين؛ الأولى قائمة على التشريعات والضوابط التعاقدية، والثانية قائمة على البنية الهندسية ذاتها. السيادة بالسياسة تعتمد على القوانين والاتفاقات، لكن تنفيذ تلك الضوابط يصبح معقّداً حين يكون «التسرّب» غير قابل للاسترجاع. ويقول عيسى إن «التسرّب لا يمكن استعادته ولا يمكنك أن تطلب من النموذج أن ينسى».

وهنا تظهر فكرة «السيادة بالهندسة المعمارية»، أي بناء بيئات حوسبة معزولة ومخصصة بالكامل لجهة واحدة، بحيث لا تكون مشتركة مع أطراف أخرى. وفي هذا النموذج، تكون البنية التحتية «مفصولة مادياً» (air-gapped)، ولا يشاركها أي عميل آخر.

المنطق واضح، فإذا كانت النماذج التوليدية تستمد قيمتها من بيانات حساسة كالنماذج التجارية أو الشيفرات الجينية أو البنى المالية، فإن التحكم المعماري يصبح أداًة استراتيجيةً لحماية هذه القيمة. فالسيادة هنا ليست انعزالاً، بل إدارة واعية للمخاطر طويلة الأمد.

الحوسبة السحابية والذكاء الاصطناعي

على مدى عقدين تقريباً، أعادت الحوسبة السحابية تشكيل البنية الرقمية للشركات. لكن حتى اليوم، لم تنتقل غالبية بيانات المؤسسات بالكامل إلى السحابة العامة. ومع صعود الذكاء الاصطناعي التوليدي، بدأ البعض يعيد النظر.

يرى عيسى أنه «بعد 15 أو 20 عاماً من الحوسبة السحابية، لم تنتقل نسبة كبيرة من بيانات المؤسسات إلى السحابة. أما الآن، في عصر الذكاء الاصطناعي، نرى بعضهم ينسحب». ويُرجع عيسى السبب ليس إلى أساس عاطفي بل بنيوي، ويقول: «في الحوسبة التقليدية، يمكن فصل البيانات، أما في النماذج اللغوية، فإن المعرفة تصبح جزءاً من تكوين النموذج نفسه. لكن هل يعني ذلك أن الحوسبة السحابية والسيادة في مسار تصادمي؟».

يرد عيسى قائلاً: «أعتقد أن الأمر كذلك، فالذكاء الاصطناعي سرّع هذا الاتجاه»، موضحاً أن المقصود ليس نهاية الحوسبة السحابية، بل ظهور بنى مزدوجة. إنها بيئات سحابية مشتركة للأعمال العامة وبيئات سيادية مخصصة للتطبيقات الاستراتيجية.

النماذج اللغوية تجعل مسألة «السيادة» أكثر إلحاحاً لأن المعرفة التي تتعلّمها لا يمكن استرجاعها أو محوها بسهولة (غيتي)

مخاطر البطء أكبر من مخاطر الإسراف

بينما يتخوف بعض صناع القرار من الإفراط في الإنفاق على البنية التحتية للذكاء الاصطناعي، يرى عيسى أن الخطر الأكبر هو التردد، ويشرح أن «مخاطر التقليل في الاستثمار أكبر من مخاطر الإفراط فيه»، وأن الذكاء الاصطناعي ليس مجرد تطور تدريجي في السرعة أو السعة، بل يعيد تعريف نماذج الإنتاجية والخدمات. ويصف عيسى ما يحدث بأنه «ليس مجرد قفزة تقنية بل طريقة مختلفة تماماً في التفكير بالأعمال وخلق القيمة». ويشدد على أنه بالنسبة للدول التي تسعى إلى التحول لمراكز للذكاء الاصطناعي، «فإن التأخير قد يعني خسارة سباق استقطاب المواهب».

البنية التحتية وحدها لا تكفي

الاستثمار في مراكز البيانات لا يحل المشكلة بالكامل، فالموهبة هي العامل الحاسم. ويفيد عيسى خلال حديثه مع «الشرق الأوسط» بأن «الموهبة تحتاج إلى وقت، وأن التحول نحو الذكاء الاصطناعي يتطلب طيفاً واسعاً من الكفاءات؛ مهندسي كهرباء ومختصي طاقة وخبراء مراكز بيانات ومطوري برمجيات وباحثي تعلم آلي وغيرهم». ويلفت عيسى إلى أن «أي تقنية تعزز الإنتاجية تؤثر في سوق العمل لكنها تخلق أيضاً وظائف جديدة»، ويضرب مثالاً توضيحياً كنجاح وادي السيليكون «الذي لم يكن نتيجة بنية تحتية فقط، بل نتيجة منظومة تعليمية ومؤسسية بُنيت على مدى عقود»، ويضيف: «إذا أردت أن تصبح مركزاً للذكاء الاصطناعي، فإن أهم قرار معماري هو أن تبدأ الآن».

تتجه بعض المؤسسات إلى نماذج سيادية معمارية مخصّصة بدل الاعتماد الكامل على الحوسبة السحابية المشتركة (غيتي)

السيادة... لكن مع ترابط عالمي

ألا تعني السيادة الاستقلال الكامل؟ يرد عيسى قائلاً إن «السيادة الكاملة دون أي ترابط هي خيال. فإنتاج الشرائح المتقدمة، على سبيل المثال، لا يزال يعتمد إلى حد كبير على مصانع خارجية... لذلك، السيادة مفهوم نسبي»، ويزيد: «هناك درجات من السيادة يمكن تحقيقها...لكن 100 في المائة سيادة؟ حتى العالم بأكمله لا يستطيع ذلك».

بالنسبة للدول ذات الطموحات الكبيرة والموارد المحدودة، يظل السؤال قائماً: كيف تلحق بالركب؟ يحذر عيسى من أن «هذه ليست ثورة تكنولوجية يمكن أن تتأخر عنها ولا يمكنك أيضاً أن تنتظر عشر سنوات بينما تستمتع الدول المجاورة بمكاسب الإنتاجية». الذكاء الاصطناعي لا يعيد تشكيل قطاع واحد، بل قطاعات بأكملها.

في النهاية، قد لا يكون الجدل حول السيادة مجرد صراع جيوسياسي، بل تحوّل اقتصادي عميق. فالتحكم في بيئات تدريب النماذج قد يصبح عاملاً استراتيجياً يعادل أهمية الموارد الطبيعية في مراحل سابقة. لكن، كما يختتم عيسى، فإن الاستثمار الحقيقي لا يقتصر على العتاد «حيث إن بناء الموهبة يحتاج إلى وقت واستثمار طويل الأمد».


النساء أم الرجال... من يرى الذكاء الاصطناعي أكثر خطورة؟

الفجوة في المواقف لا ترتبط فقط بمستوى المعرفة بل بدرجة النفور من المخاطرة وحجم التعرّض المحتمل لاضطراب سوق العمل (شاترستوك)
الفجوة في المواقف لا ترتبط فقط بمستوى المعرفة بل بدرجة النفور من المخاطرة وحجم التعرّض المحتمل لاضطراب سوق العمل (شاترستوك)
TT

النساء أم الرجال... من يرى الذكاء الاصطناعي أكثر خطورة؟

الفجوة في المواقف لا ترتبط فقط بمستوى المعرفة بل بدرجة النفور من المخاطرة وحجم التعرّض المحتمل لاضطراب سوق العمل (شاترستوك)
الفجوة في المواقف لا ترتبط فقط بمستوى المعرفة بل بدرجة النفور من المخاطرة وحجم التعرّض المحتمل لاضطراب سوق العمل (شاترستوك)

غالباً ما يُقدَّم الذكاء الاصطناعي بوصفه ثورة في الإنتاجية قادرة على رفع الناتج الاقتصادي، وتسريع الابتكار، وإعادة تشكيل طريقة إنجاز العمل. لكن دراسة جديدة تشير إلى أن الجمهور لا ينظر إلى وعود الذكاء الاصطناعي بالطريقة نفسها، وأن المواقف تجاه هذه التقنية تتأثر بقوة بعامل النوع الاجتماعي، لا سيما عندما تكون آثارها على الوظائف غير مؤكدة.

وتخلص الدراسة إلى أن النساء مقارنة بالرجال ينظرن إلى الذكاء الاصطناعي باعتباره أكثر خطورة، وأن دعمهن لاعتماد هذه التقنيات يتراجع بوتيرة أشد عندما تنخفض احتمالات أن تؤدي إلى مكاسب صافية في الوظائف. ويحذر الباحثون من أنه إذا لم تُؤخذ المخاوف الخاصة بالنساء في الاعتبار ضمن سياسات الذكاء الاصطناعي، وخاصة ما يتعلق باضطراب سوق العمل، وتفاوت فرص الاستفادة، فقد يؤدي ذلك إلى تعميق الفجوة القائمة بين الجنسين، وربما إلى رد فعل سياسي مضاد للتكنولوجيا.

فجوة لا ترتبط بالمعرفة فقط

تنطلق الدراسة من فكرة بسيطة هي أن فوائد الذكاء الاصطناعي وتكاليفه لن تتوزع بالتساوي على الجميع. فمع انتشار الذكاء الاصطناعي في الاقتصاد، قد تُعزَّز بعض الوظائف وتُعاد صياغة أخرى، بينما قد تختفي وظائف بعينها، أو تتراجع أهميتها. وتشير الدراسة إلى أن النساء ممثلات بنسبة أعلى في وظائف إدارية وكتابية وخدمية يُحتمل أن تكون أكثر عرضة للتأثر بالتقنيات الآلية. وفي المقابل، لا تزال النساء أقل تمثيلاً في مسارات العلوم والتقنية والهندسة والرياضيات، وفي مواقع القيادة التي تمنح عادةً فرصاً أفضل للوصول إلى وظائف الذكاء الاصطناعي الأعلى أجراً، وهو ما قد يوسّع فجوة الأجور بين الجنسين مع مرور الوقت.

وترى الدراسة أن هذه الاختلافات الواقعية في التعرض للمخاطر، وفي فرص الوصول إلى المنافع، تنعكس على اختلافات في المواقف. فبحسب أبحاث سابقة، تميل النساء بالفعل إلى مزيد من الشك مقارنة بالرجال تجاه موجات الأتمتة السابقة.

لكن ما لم يكن واضحاً بما يكفي هو: لماذا تستمر هذه الفجوة؟ هنا يأتي طرح الباحثين عامل «المخاطر» في طريقة التعامل معها، وفي مقدار التعرض لها يقدّم تفسيراً إضافياً.

تجاهل المخاوف الجندرية في سياسات الذكاء الاصطناعي قد يعمّق عدم المساواة ويؤدي إلى ردود فعل سياسية وتنظيمية مضادة للتكنولوجيا (شاترستوك)

الميل للمخاطرة والتعرّض للمخاطر

تركّز الدراسة على عنصرين: الأول يتعلق بالتوجه نحو المخاطرة (Risk orientation)، أي مدى استعداد الفرد عموماً لتحمل عدم اليقين والمفاضلات ذات النتائج غير المضمونة. والآخر هو التعرّض للمخاطر (Risk exposure)، واحتمال أن يترتب على اعتماد الذكاء الاصطناعي تكلفة مباشرة، أو منفعة مباشرة للفرد، تبعاً لموقعه في سوق العمل، وغيرها من العوامل.

ويفترض الباحثون أن النساء ينظرن إلى الذكاء الاصطناعي باعتباره أكثر خطورة، لأنهن في المتوسط أكثر نفوراً من المخاطرة، ولأنهن أيضاً أكثر تعرضاً لاضطراب الوظائف الناتج عن الذكاء الاصطناعي. وتؤكد الدراسة أن هذه الأنماط لا تُقدَّم بوصفها «سمات فطرية»، بل بوصفها نتاجاً لأعراف اجتماعية، وتعلم اجتماعي، وبُنى وظيفية مترسخة منذ عقود.

تجربة واقعية

لاختبار هذا الطرح، أجرى الباحثون استطلاعاً عبر الإنترنت في نوفمبر (تشرين الثاني) 2023 باستخدام لوحة «YouGov». وبلغت العينة الكاملة 6056 مشاركاً، لكن التحليل في هذه الدراسة يركز على 3049 مشاركاً وُجهت إليهم أسئلة حول الذكاء الاصطناعي التوليدي (بينما وُجهت المجموعة الأخرى إلى أسئلة مقارنة عن التجارة). وشملت العينة مشاركين من الولايات المتحدة وكندا، وهما دولتان يصفهما الباحثون بأنهما متقاربتان من حيث الأسس المؤسسية وبنية سوق العمل، رغم اختلاف تفاصيل تبني الذكاء الاصطناعي وتنظيمه.

قاس الباحثون «تصور خطورة الذكاء الاصطناعي» عبر سؤالين على مقياس من 11 نقطة. سُئل المشاركون عن مدى رؤيتهم حول هل مخاطر الذكاء الاصطناعي التوليدي تفوق فوائده بالنسبة لك شخصياً؟ وهل تفوق فوائده بالنسبة لمجتمعك؟ ثم جرى دمج الإجابتين في مؤشر واحد.

ولقياس التوجه نحو المخاطرة استخدمت الدراسة سؤالاً شائعاً في أبحاث المخاطر: هل تفضّل ربحاً مضموناً قدره 1000 دولار؟ أم احتمالاً بنسبة 50 في المائة لربح 2000 دولار؟ ويفترض أن اختيار الألف المضمونة يشير إلى نفور أعلى من المخاطرة.

أما قياس التعرض للمخاطر فكان أكثر تعقيداً لأن آثار الذكاء الاصطناعي التوليدي على سوق العمل لا تزال غير محسومة. لذلك استخدمت الدراسة التعليم بوصفه مؤشراً عاماً على مدى الاستعداد للاستفادة من التحولات التقنية، مع اختبارات إضافية لمقاييس مرتبطة بالتعرض المهني للأتمتة والذكاء الاصطناعي على عينات فرعية من العاملين.

كما تضمن الاستطلاع تجربة مسحيّة مُسجَّلة مسبقاً تغير مستوى المخاطرة الاقتصادية في سيناريو تبني الشركة للذكاء الاصطناعي. قرأ المشاركون حالة عن شركة تتبنى أدوات ذكاء اصطناعي توليدي، ثم قُدِّمت لهم احتمالات مختلفة (تعيين عشوائي) بأن يؤدي ذلك إلى مكاسب صافية في التوظيف. تراوحت الاحتمالات بين 100 في المائة (مكاسب مؤكدة) و70 في المائة و50 في المائة و30 في المائة (مستوى مخاطرة مرتفع)، ثم طلب منهم تأكيد أو رفض قرار الشركة.

الدراسة: دعم النساء لاعتماد الذكاء الاصطناعي يتراجع بوتيرة أسرع من الرجال كلما انخفضت احتمالات المكاسب الصافية في التوظيف (شاترستوك)

ما النتيجة الأبرز؟

أظهرت النتائج أن النساء أكثر ميلاً من الرجال للقول إن مخاطر الذكاء الاصطناعي تفوق فوائده. وتشير الدراسة إلى أن نسبة من ترى المخاطر أعلى من الفوائد تزيد لدى النساء بنحو 11في المائة مقارنة بالرجال، وهي فجوة تقارب حجم الفجوة المعروفة في مواقف الجنسين تجاه التجارة، وهي قضية تؤثر تاريخياً على النقاشات السياسية، والقرارات التنظيمية.

وعند التعمق، يظهر أن هذه الفجوة ترتبط بقوة بالتوجه نحو المخاطرة. فبين المشاركين الأكثر ميلاً لتحمل المخاطرة، تتراجع الفجوة بين النساء والرجال بشكل كبير، أو تتلاشى. بينما تكون الفجوة الأوضح بين من يفضّلون اليقين. يعني هذا أن النفور العام من المخاطرة يضاعف الحذر من تقنية ذات نتائج اقتصادية غير مؤكدة.

كما تشير النتائج إلى دور التعرض للمخاطر، حيث مالت النساء إلى رؤية الذكاء الاصطناعي أكثر خطورة من الرجال في كل من فئات التعليم الجامعي وغير الجامعي، وهو ما ينسجم مع كونهن أكثر تمركزاً في وظائف قد تكون أكثر عرضة للأتمتة، وأقل وصولاً لمسارات العمل الأعلى ربحاً في مجالات الذكاء الاصطناعي.

دليل تجريبي

تظهر التجربة المسحيّة أن كلا من الرجال والنساء يقللون دعمهم لاعتماد الذكاء الاصطناعي عندما تنخفض احتمالات المكاسب الصافية في الوظائف. لكن دعم النساء يتراجع بسرعة أكبر عندما يصبح السيناريو أكثر خطورة. فعند مستوى المخاطرة الأعلى حيث تكون احتمالية المكاسب الصافية في الوظائف 30 في المائة فقط يكون دعم النساء أقل بشكل واضح من دعم الرجال. أما عندما تكون المكاسب مؤكدة بنسبة 100 في المائة، فتتقلص الفجوة بين الجنسين ولا تعود ذات دلالة إحصائية بحسب ما تذكر الدراسة. بمعنى آخر: النساء لسن «ضد الذكاء الاصطناعي» بالمطلق، لكن دعمهن يبدو أكثر ارتباطاً بمدى وضوح الفائدة الاقتصادية، وتأكدها.

من يعرف أكثر؟

حللت الدراسة أيضاً إجابات مفتوحة حول أكبر فوائد الذكاء الاصطناعي ومخاطره باستخدام نمذجة موضوعات نصية. وظهرت فروق نوعية، إذ عبّرت إجابات النساء بدرجة أكبر عن عدم اليقين («لا أعرف») وعن الشك في وجود فوائد اقتصادية واضحة. في المقابل، ركّزت إجابات الرجال أكثر على الإنتاجية والكفاءة، وتحسين العمليات الاقتصادية.

أما بشأن المخاطر، فقد ركّزت إجابات النساء أكثر على فقدان الوظائف والبطالة، بينما ركّزت إجابات الرجال أكثر على الاستخدامات الخبيثة، والمخاطر المجتمعية الأوسع. ويعزز ذلك استنتاج الدراسة بأن النساء في المتوسط يضعن الوزن الأكبر للمخاطر الاقتصادية، ويعبّرن عن قدر أعلى من عدم اليقين بشأن مكاسب الذكاء الاصطناعي.

أهمية البحث

ترى الدراسة أن هذه الفروق ليست اجتماعية فقط، بل سياسية أيضاً. فإذا انعكس انخفاض دعم النساء لاعتماد الذكاء الاصطناعي على انخفاض استخدامهن لأدواته في العمل، فقد يتراجع حضور النساء في مسار تطوير هذه التقنيات وحوكمتها في وقت تتوسع فيه تطبيقات الذكاء الاصطناعي داخل المؤسسات. وهذا يعني أن مخاوف النساء قد لا تُدمج بالقدر الكافي في التصميم، والضمانات وقرارات النشر والتشغيل.

كما تشير الدراسة إلى أن المواقف من الذكاء الاصطناعي قد تصبح أكثر تسييساً. فإذا كانت النساء أكثر دعماً للتدخل الحكومي لإبطاء التبني تحت سيناريوهات فقدان الوظائف، فإن ذلك قد يفتح فرصاً سياسية: قد يتبنى بعض السياسيين سياسات حماية وتنظيم لجذب أصوات النساء، أو قد تُستخدم مشاعر الحذر تجاه الذكاء الاصطناعي أداة تعبئة انتخابية.

لا تقول الدراسة إن النساء يرفضن التقنية لكونها «تقنية»، بل تشير إلى أنهن يستجبن لمشهد مخاطر تكون فيه الرهانات غير متساوية، حيث تختلط وعود الذكاء الاصطناعي بآثار وظيفية غير مؤكدة، وبفرص استفادة غير متكافئة. وبالنسبة للحكومات والمؤسسات التي تدفع نحو تبنٍ سريع، فإن الرسالة تبدو واضحة، وهي أن سياسات الذكاء الاصطناعي التي تتجاهل التعرض غير المتساوي لفقدان الوظائف، وتفاوت الوصول إلى فرص العمل عالية القيمة، واختلاف إدراك المخاطر، قد تعمّق عدم المساواة، وتضعف الثقة العامة. ومن ثمّ، فإن معالجة هذه المخاوف عبر حماية القوى العاملة، ومسارات إعادة التأهيل، وتقليل التحيز في الأنظمة، وحوكمة شاملة قد تكون ضرورية ليس فقط للعدالة، بل للحفاظ على شرعية التحول مع إعادة تشكيل الذكاء الاصطناعي للاقتصاد.