«فورمولا 1»: «كاوست» و«مكلارين» يعملان على تصميم سيارات سباق أفضل

«فورمولا 1»: «كاوست» و«مكلارين»  يعملان على تصميم سيارات سباق أفضل
TT

«فورمولا 1»: «كاوست» و«مكلارين» يعملان على تصميم سيارات سباق أفضل

«فورمولا 1»: «كاوست» و«مكلارين»  يعملان على تصميم سيارات سباق أفضل

يعتبر تحسين تصميم سيارات السباق الفاخرة، أحد التطبيقات المثيرة لديناميكا الموائع الحاسوبية، حسبما يرى الدكتور ماتيو بارساني، الأستاذ المساعد في قسم الرياضيات التطبيقية وعلم الحاسوب في جامعة الملك عبد الله للعلوم والتقنية (كاوست)، الذي يعمل على إدماج وتوظيف خوارزميات الجيل التالي في عالم الواقع عبر شراكة مع فريق «مكلارين» لسباقات السيارات.
والخوارزميات هي مجموعة القواعد التي تستخدم لحل مسألة ما، وفي عالم البرمجة هي طرق التحليل والتفكير التي ينبغي اتباعها حتى تتمكن من كتابة الرموز بشكل صحيح.

سيارات «فورمولا 1»
يُطبِّق بارساني خبرته الحوسبية والرقمية لأجل مساعدة الفريق الذي يخوض سباق «فورمولا 1» على تحسين التصميم الديناميكي الهوائي لسياراته. ويعتبر هذا المشروع جزءاً من شراكة متعددة الجوانب وطويلة الأجل عُقدت عام 2018 بين «كاوست» وفريق مكلارين لسباقات السيارات.
وستعمل هذه الشراكة على تطوير تقنيات جديدة لتعزيز فريق «فورمولا 1» على المدى القصير، غير أن المركبات التقليدية، كالسيارات التي تجوب الطرق والخطوط الجوية التجارية، ستستفيد هي الأخرى من هذه التقنيات.
وينصب تركيز بارساني في مركز أبحاث الحوسبة الفائقة، التابع لـ«كاوست»، على تطوير خوارزميات مبتكرة وقوية ودقيقة وعالية المستوى لنمذجة تدفق الموائع (السوائل والغازات) حول الأجسام، لتشغيلها في هياكل الجيلين الحالي والتالي للحواسيب الفائقة. ويقول بارساني: «إننا نوسع حدود أبحاثنا عن طريق تطبيق خوارزمياتنا على شيء متقدم كسيارة فريق (فورمولا 1)». ومع الوضع في الاعتبار أن ما يفصل سيارات سباق «فورمولا 1» عن منافساتها هو محض كسور من الثانية في كل دورة، فإن كل تفصيلة صغيرة لها أهمية بالغة، متى تعلق الأمر بالبحث عن ميزة أدائية. ويفسر جوناثان نيل، مدير عمليات مجموعة مكلارين، الأمر قائلاً: «إنه للفوز بسباق (فورمولا 1) عليك أن تكون بارعاً في كل شيء».
ويُعد سباق «فورمولا 1» ساحة لاختبار مجالات متنوعة، كتصميم الوقود، وعلم المواد المركبة، وميكانيكا الموائع، وتصميم أجهزة الاستشعار. ويقول نيل: «يستحيل علينا أن نضاهي عمق المعرفة الموجودة في بعض هذه المجالات. والفِرَق والبطولات العظيمة تعتمد على الشراكات العظيمة».
ويضيف: «سيارة (فورمولا 1) التي تنحرف عند منعطف، تنطلق في الهواء المنحني فعليّاً، وهذا أمر يستحيل إنجازه في نفق هوائي، ومن الصعب جدّاً إنجازه في ديناميكا الموائع الحسابية». وهنا تتجلى خبرة بارساني في التحليل الرقمي وديناميكا الموائع الحسابية. والهدف هو إتاحة عمليات محاكاة ديناميكية هوائية أدق، تمثل الظواهر الفيزيائية تمثيلاً أفضل باستغلال قدرات الجيلين الحالي والتالي من الحواسيب الفائقة.

خوارزميات قوية وسريعة
يتلخص جوهر مشروع بارساني في خلق «شبكة» مفاهيمية، ثم استخدام خوارزميات قوية وعالية المستوى وشديدة الفاعلية، للمساعدة على توصيف تدفق الهواء حول جسم ما.
ويوضح بارساني أن تطوير شبكة لشكل بالغ التعقيد يعد بمثابة تحدٍ حقيقي. وبعد ذلك، هناك الخوارزمية المستقرة بشكل غير خطيِّ، التي يتعين تصميمها وتنفيذها بطريقة حوسبية عالية الأداء، وهو ما كان أمراً شديد الصعوبة حتى فترة قريبة؛ إذ كان الباحثون يبادرون بتكييف وتعديل خوارزميات مستقرة خطيّاً وعالية المستوى. غير أن الحسابات التي تتماشى مع هذه الخوارزميات المُعاد تعيين غرضها هشة؛ فمن الممكن أن «تنفجر» وتخفق في إعطائنا إجابة محددة. ويرى بارساني أنه نتيجة لذلك لم تتبنَ الصناعة قط تلك الخوارزميات.
ويقود بارساني واحداً من الفرق القليلة من نوعها حول العالم المعنية بابتكار خوارزميات قوية عالية المستوى خصيصاً لحل المعادلات التفاضلية الجزئية غير الخطية. ويقول: «تسعى الصناعة إلى أن تكون تلك الخوارزميات قوية وسريعة. ونحن نخطو خطى مهمة بسرعة نحو تحقيق عنصر القوة، وننفذ هذه الخوارزميات الجديدة القابلة للتكيف في إطار حوسبي عالي الأداء يعمل ببراعة على بعض أضخم الحواسيب الفائقة في العالم، بما في ذلك الحاسوب الفائق (شاهين XC40) التابع لـ(كاوست)». وسيقوم بارساني وفريق عمله بحلّ كثير من مشكلات الديناميكا الهوائية الاختبارية لضمان دقة الشفرة قبل استخدامها للمساعدة مستقبلاً في أي عملية إعادة تصميم للسيارة. ويقول: «هذا هو مستوى المنافسة في سباق (فورمولا 1)؛ حيث السعي من أجل مكاسب الأداء لا هوادة فيه».
من جهته، يقول نيل: «فور أن ننتهي من بناء سيارة، نكتشف أنها أمست عتيقة؛ لأن فريق البحث والتطوير يكون قد مضى قدماً، وجاء بالجديد». ويعد تأثير الانتشار التدريجي لسباق «فورمولا 1» سبباً رئيسيّاً للانخراط في هذه الرياضة، بحسب تصريح بارساني. يذكر أن أحزمة الأمان والمكابح المانعة للانغلاق ما هي إلا بعض التقنيات التي بدأت في هذا المضمار. ومن الممكن أن تتمثل التطبيقات التالية لنماذج بارساني في تصميم مكونات ديناميكية هوائية أكثر كفاءة للطائرات التجارية.



مصاعد فضائية لرحلات جماعية إلى القمر

رسم تخيلي للمصعد القمري
رسم تخيلي للمصعد القمري
TT

مصاعد فضائية لرحلات جماعية إلى القمر

رسم تخيلي للمصعد القمري
رسم تخيلي للمصعد القمري

حتى مع انخفاض أسعار رحلات الفضاء بشكل كبير في ثلاثينات القرن الحادي والعشرين المقبلة، فإن التكاليف البيئية والمالية المترتبة على استخدام الصواريخ المعبأة بوقود كيميائي للإفلات من جاذبية الأرض، كانت سبباً في إعاقة التوسع البشري إلى القمر وما بعده. كما كان هناك أيضاً غضب واسع النطاق من أن استكشاف الفضاء أصبح حكراً على الأغنياء، ما أدى إلى الرغبة في إضفاء «الطابع الديمقراطي» على الوصول إلى الفضاء.

مصاعد فضائية

كان الحلم، منذ قرون، أن نبني مصعداً فضائياً لنقلنا من الأرض إلى الفضاء من دون استخدام الصواريخ. ولكن كيف يمكن بناؤه، وأين؟ كانت التحديات الهندسية، جنباً إلى جنب مع العقبات السياسية، بالغة الضخامة. وكانت الإجابة تتلخص في قلب الفكرة وبناء خط واصل من سطح القمر إلى مدار الأرض... كل ما عليك فعله هو أن تنتقل من الأرض إلى نهاية الخط الواصل ثم القفز إلى ترام يعمل بالطاقة الشمسية والتحرك على طول المسار إلى القمر.

لكن تظل هناك حاجة إلى الصواريخ للوصول إلى النهاية المتدلية للخط الواصل، ولكن بما أن تلك الصواريخ لن تضطر إلى الإفلات تماماً من جاذبية الأرض، فانها ستحتاج إلى وقود أقل بكثير.

وكتب روان هوب في مجلة «نيو ساينتست» العلمية، وعلى عكس التصميمات التقليدية للمصاعد الفضائية، أن الخط الذي تسير عليه لم يكن بحاجة إلى ثقل موازن عملاق، يكون الضغط على الكابل أقل بكثير، وتكون المواد اللازمة لجعل هذا الأمر حقيقة متاحة، وأصبحت الفكرة قابلة للتطبيق بحلول عام 2040.

بمجرد بنائه، يصبح من الممكن نقل البشر والبضائع من الأرض بواسطة الصواريخ إلى الخط الواصل ثم إلى القمر، مع خفض إجمالي كمية الوقود اللازمة لنقل شيء ما من عالمنا إلى القمر الطبيعي بمقدار الثلثين. وأدى انخفاض الأسعار الناجم عن ذلك إلى تغيير جذري فيما يمكن القيام به في الفضاء ومن يمكنه أن يذهب من البشر.

خط قمري

يتم تصميم قاعدة أول خط قمري واصل بالقرب من القطب الجنوبي للقمر، على الجانب القريب من القمر، حيث يجري إنشاء العديد من القواعد القمرية في ثلاثينات القرن الحادي والعشرين للاستفادة من الضوء شبه الثابت في القطب الجنوبي والاحتياطيات الكبيرة من المياه المتجمدة في فوهة «شاكلتون».

على عكس قواعد القمر، التي ترتبط بالشركات الخاصة والدول على الأرض، يعد المصعد مورداً مشتركاً. وقد تم بناؤه بموجب قوانين وضعتها المنظمات غير الحكومية مثل مؤسسة «من أجل كل أنواع القمر» For All Moonkind ومؤسسة «القمر المفتوح» Open Lunar Foundation، والمنظمات المناظرة في المناطق المساهمة الرئيسية (الهند، واليابان، والصين، والاتحاد الأوروبي).

إن الخط الواصل يتصل بالقمر عبر نقطة «لاغرانج» القمرية «إل 1». هذه هي المناطق في الفضاء حيث تتوازن الجاذبية للقمر والأرض، ولا تكون هناك حاجة إلى الوقود للحفاظ على موضع الجسم.

في الواقع، فإن هذه النقطة هي عبارة مواقف سيارات في الفضاء، ومن ثمّ فهي مواقع مفيدة للغاية للمستودعات والموانئي الفضائية. الخط الواصل - أو السلم القمري Lunar Ladder، أو الممشى القمري MoonWalk، أو «عصا الجبن» Cheese Stick، كما كان يُطلق عليه بشكل مختلف - تم بناؤه في وقت واحد من مستودع فضائي في «إل 1» والقاعدة على سطح القمر. وتم اختيار البوليمر الاصطناعي فائق القوة «إم 5» كمادة، لتسليم آلاف الأطنان منه إلى «إل 1» للبناء.

كل ما عليك فعله هو الانتقال من الأرض إلى نهاية الخط الواصل والقفز إلى الترام الشمسي والتحرك على طوله إلى القمر.

تطورات المصعد القمري التاريخية

أثار هذا المشروع عدة تطورات مفيدة. كانت الصواريخ الكيميائية، التي توفر قوة دفع كافية للخروج من سطح كوكب، لا تزال قيد الاستخدام للوصول إلى مدار الأرض المنخفض، ولكن بعد ذلك، انضمت المحركات الأيونية إلى المصعد، ثم استُخدمت بعد ذلك للتحرك في جميع أرجاء النظام الشمسي. تولد هذه المحركات قوة دفع عن طريق تسريع الذرات المشحونة كهربائياً عبر حقل كهربائي، وكانت تعمل بالطاقة الشمسية، ولقد سمح هذا باستكشاف الكون الواسع على نحو أقل تكلفة وأكثر عمقاً.

يرجع أول اقتراح للمصاعد الفضائية إلى عام 1895، في تجربة فكرية ابتكرها رائد الفضاء الروسي «كونستانتين تسيولكوفسكي». كتب تسيولكوفسكي في عام 1911 يقول: «الأرض مهد الإنسانية، ولكن البشرية لا يمكن أن تبقى في المهد إلى الأبد». وقد أجري أول اختبار لهذه التكنولوجيا عام 2018، مع ظهور مشروع «STARS - Me»: القمر الاصطناعي الآلي المستقل المربوط بالفضاء - المصعد المصغر».

حدث هذا بجوار محطة الفضاء الدولية، باستخدام تصميم من قبل الباحثين في جامعة شيزوكا في اليابان. ويتكون من قمرين اصطناعيين صغيرين متصلين بكابل طوله 11 متراً مع زاحف يتنقل بينهما.

في ثلاثينات القرن الحادي والعشرين، عندما تبدأ بعثات «أرتميس» إلى القمر، سيتم بناء محطة «البوابة الفضائية» في المدار القمري، وأصبح هذا حجر انطلاق لمستودع «إل 1».

إن الخط الواصل يلعب دوراً محورياً في إضفاء الطابع الديمقراطي على الفضاء، إذ يصبح الذهاب إلى القمر للعمل أو قضاء وقت الفراغ شيئاً يمكن لأي شخص تقريباً فعله إذا أراد. ويتبع ذلك تحقيق اختراقات علمية من إنشاء قاعدة أبحاث في «إل 1»، ويتم نقل العمليات المدمرة - مثل التعدين - خارج كوكب الأرض. فقد تم نقل جزء كبير من البنية الأساسية الصناعية الملوثة للأرض - لا سيما منشآت الخوادم التي تدعم الطلب على الكومبيوترات - إلى القمر، حيث يمكن استخدامها بكفاءة أكبر بواسطة الطاقة الشمسية.