اختراق برامج التنقيب عن العملات الرقمية... لعروض مباريات كرة القدم

TT

اختراق برامج التنقيب عن العملات الرقمية... لعروض مباريات كرة القدم

> مع الانتشار الكبير للعملات الرقمية وبرامج التنقيب عنها، فكان لزاما أن يحاول المجرمون الرقميون استغلال هذه النزعة لصالحهم، حيث اكتشفت الشركة أن المزيد من مجرمي الإنترنت قد تحولوا إلى استخدام البرمجيات الخبيثة للتنقيب عن العملات الرقمية بطريقة غير شرعية من خلال حسابات مستخدمي الأجهزة المحمولة (تُعرف هذه البرمجيات ببرمجيات التعدين). وأصبح هؤلاء المجرمون أكثر جشعا عبر لجوئهم كذلك إلى أدوات وأساليب خطرة من خلال إخفاء آليات التنقيب عن العملات الرقمية داخل تطبيقات لكرة القدم وأخرى خاصة بالشبكات الافتراضية الخاصة، وذلك للاستفادة غير المشروعة من مئات الآلاف من الضحايا من دون علمهم.
ويلجأ مجرمو الإنترنت لعدة طرق للتنقيب عن العملات الرقمية خلال سعيهم لزيادة أرباحهم، إذ يمارسون عمليات التنقيب على الكومبيوترات المكتبية والمحمولة والأجهزة الخادمة، فضلا عن الهواتف الذكية. ومع ذلك، فهم لا يكتفون باستخدام البرمجيات الخبيثة في هذه العمليات، حيث تم العثور على أدلة تثبت أن المجرمين يربطون آليات الاحتيال بتطبيقات شرعية وينشرونها تحت غطاء هذه التطبيقات التي قد تكون خاصة ببث مباريات كرة القدم أو تشغيل الشبكات الخاصة الافتراضية Virtual Private Networks VPN، مع تركز أكبر عدد من ضحايا هذه العمليات في البرازيل وأوكرانيا. وتعتبر أكثر التطبيقات المستخدمة من قبل المجرمين لتغطية أنشطتهم الإجرامية المتمثلة في التنقيب عن العملات الرقمية تطبيقات خاصة بكرة القدم تعمل في الظاهر على بث مباريات كرة القدم فيما تخفي سرّا قيامها بالتنقيب عن العملات الرقمية وسرقتها. واستخدم المجرمون لتحقيق ذلك أداة التعدين JavaScript Coinhive. وعندما يقوم المستخدمون بالبدء بمشاهدة بث المباريات، يفتح التطبيق ملف HTML يتضمن برمجية JavaScript Coinhive، محولا قدرات وحدة المعالجة المركزية في جهاز المستخدم إلى عملة «مونيرو» الافتراضية لصالح جهة البث. وقد نُشرت هذه التطبيقات عبر متجر Google Play وتم تحميل أكثرها شيوعا نحو 100 ألف مرة، 90% منها في البرازيل. وقد تنتشر هذه التطبيقات بشكل كبير خلال الأسابيع المقبلة بسبب اقتراب موعد مباريات كأس العالم لكرة القدم في روسيا في صيف العام الحالي. الجدير ذكره أن التطبيقات الشرعية والمسؤولة عن الاتصال بالإنترنت عبر شبكات افتراضية خاصة أصبحت الهدف التالي لمجرمي الإنترنت المنقبين عن العملات الرقمية. وتسمح تطبيقات الشبكات الافتراضية الخاصة المستخدمين من الوصول إلى مواقع ومصادر على الإنترنت لن يكون الوصول إليها متاحا بالطريقة العادية بسبب قيود تفرضها السلطات المحلية المعنية بتنظيم الاتصالات في بلد ما. وتعتبر أداة التعدين Vilny.net القادرة على مراقبة عملية شحن البطارية ودرجة حرارة الجهاز الحصول على الأموال من الأجهزة المستهدفة بأقل مخاطر ممكنة. ويقوم التطبيق بتحميل ملف يمكن تشغيله على جهاز المستخدم بالخفاء من جهاز خادم خاص. وتم تحميل Vilny.net أكثر من 50 ألف مرة، معظمها من مستخدمين في أوكرانيا وروسيا.
وتُظهر هذه النتائج أن مطوري التطبيقات الإجرامية هذه يوسعون مواردهم ويطورون أساليبهم لإجراء عمليات أكثر فعالية في التنقيب عن العملة الرقمية، وهم يستخدمون تطبيقات شرعية متخصصة ذات قدرات تعدين متقدمة. ويستطيع مجرمو الإنترنت على هذا النحو الاستفادة من كل مستخدم مرتين، أولا من خلال عرض الإعلانات في التطبيق، وثانيا بالتعدين الخفي للعملات الرقمية لصالح مستخدمين موارد الكومبيوترات المصابة للمستخدمين. وينصح باحثو الشركة المستخدمين بالالتزام بالإجراءات التالية لحماية أجهزتهم وبياناتهم الخاصة من الهجمات الإلكترونية المحتملة:
> أولا، تعطيل ميزة تثبيت التطبيقات الواردة من مصادر غير متاجر التطبيقات الرسمية
> ثانيا، المحافظة على تحديث إصدار نظام التشغيل الخاص بهدف خفض عدد الثغرات البرمجية ومخاطر التعرض للهجوم.
> ثالثا، اختيار التطبيقات التي يقدمها موردون موثوق بهم فقط، لا سيما تلك المعنية بحماية خصوصية المستخدم عند الاتصال بالإنترنت.
> وأخيرا تثبيت حلول أمنية لحماية الأجهزة من الهجمات الإلكترونية.



هل أصبحنا على أعتاب مرحلة تباطؤ الذكاء الاصطناعي؟

هل أصبحنا على أعتاب مرحلة تباطؤ الذكاء الاصطناعي؟
TT

هل أصبحنا على أعتاب مرحلة تباطؤ الذكاء الاصطناعي؟

هل أصبحنا على أعتاب مرحلة تباطؤ الذكاء الاصطناعي؟

يوجه ديميس هاسابيس، أحد أكثر خبراء الذكاء الاصطناعي نفوذاً في العالم، تحذيراً لبقية صناعة التكنولوجيا: لا تتوقعوا أن تستمر برامج المحادثة الآلية في التحسن بنفس السرعة التي كانت عليها خلال السنوات القليلة الماضية، كما كتب كاد ميتز وتريب ميكل (*).

التهام بيانات الإنترنت

لقد اعتمد باحثو الذكاء الاصطناعي لبعض الوقت على مفهوم بسيط إلى حد ما لتحسين أنظمتهم: فكلما زادت البيانات التي جمعوها من الإنترنت، والتي ضخُّوها في نماذج لغوية كبيرة (التكنولوجيا التي تقف وراء برامج المحادثة الآلية) كان أداء هذه الأنظمة أفضل.

ولكن هاسابيس، الذي يشرف على «غوغل ديب مايند»، مختبر الذكاء الاصطناعي الرئيسي للشركة، يقول الآن إن هذه الطريقة بدأت تفقد زخمها ببساطة، لأن البيانات نفدت من أيدي شركات التكنولوجيا.

وقال هاسابيس، هذا الشهر، في مقابلة مع صحيفة «نيويورك تايمز»، وهو يستعد لقبول «جائزة نوبل» عن عمله في مجال الذكاء الاصطناعي: «يشهد الجميع في الصناعة عائدات متناقصة».

استنفاد النصوص الرقمية المتاحة

هاسابيس ليس الخبير الوحيد في مجال الذكاء الاصطناعي الذي يحذر من تباطؤ؛ إذ أظهرت المقابلات التي أُجريت مع 20 من المديرين التنفيذيين والباحثين اعتقاداً واسع النطاق بأن صناعة التكنولوجيا تواجه مشكلة كان يعتقد كثيرون أنها لا يمكن تصورها قبل بضع سنوات فقط؛ فقد استنفدت معظم النصوص الرقمية المتاحة على الإنترنت.

استثمارات رغم المخاوف

بدأت هذه المشكلة في الظهور، حتى مع استمرار ضخ مليارات الدولارات في تطوير الذكاء الاصطناعي. في الأسبوع الماضي، قالت شركة «داتابريكس (Databricks)»، وهي شركة بيانات الذكاء الاصطناعي، إنها تقترب من 10 مليارات دولار في التمويل، وهي أكبر جولة تمويل خاصة على الإطلاق لشركة ناشئة. وتشير أكبر الشركات في مجال التكنولوجيا إلى أنها لا تخطط لإبطاء إنفاقها على مراكز البيانات العملاقة التي تدير أنظمة الذكاء الاصطناعي.

لا يشعر الجميع في عالم الذكاء الاصطناعي بالقلق. يقول البعض، بمن في ذلك سام ألتمان الرئيس التنفيذي لشركة «أوبن إيه آي»، إن التقدم سيستمر بنفس الوتيرة، وإن كان مع بعض التغييرات في التقنيات القديمة. كما أن داريو أمودي، الرئيس التنفيذي لشركة الذكاء الاصطناعي الناشئة، «أنثروبيك»، وجينسن هوانغ، الرئيس التنفيذي لشركة «نيفيديا»، متفائلان أيضاً.

قوانين التوسع... هل تتوقف؟

تعود جذور المناقشة إلى عام 2020، عندما نشر جاريد كابلان، وهو فيزيائي نظري في جامعة جونز هوبكنز، ورقة بحثية تُظهِر أن نماذج اللغة الكبيرة أصبحت أكثر قوة وواقعية بشكل مطرد مع تحليل المزيد من البيانات.

أطلق الباحثون على نتائج كابلان «قوانين التوسع (Scaling Laws)»... فكما يتعلم الطلاب المزيد من خلال قراءة المزيد من الكتب، تحسنت أنظمة الذكاء الاصطناعي مع تناولها كميات كبيرة بشكل متزايد من النصوص الرقمية التي تم جمعها من الإنترنت، بما في ذلك المقالات الإخبارية وسجلات الدردشة وبرامج الكومبيوتر.

ونظراً لقوة هذه الظاهرة، سارعت شركات، مثل «OpenAI (أوبن إيه آي)» و«غوغل» و«ميتا» إلى الحصول على أكبر قدر ممكن من بيانات الإنترنت، وتجاهلت السياسات المؤسسية وحتى مناقشة ما إذا كان ينبغي لها التحايل على القانون، وفقاً لفحص أجرته صحيفة «نيويورك تايمز»، هذا العام.

كان هذا هو المعادل الحديث لـ«قانون مور»، وهو المبدأ الذي كثيراً ما يُستشهد به، والذي صاغه في ستينات القرن العشرين المؤسس المشارك لشركة «إنتل غوردون مور»؛ فقد أظهر مور أن عدد الترانزستورات على شريحة السيليكون يتضاعف كل عامين، أو نحو ذلك، ما يزيد بشكل مطرد من قوة أجهزة الكومبيوتر في العالم. وقد صمد «قانون مور» لمدة 40 عاماً. ولكن في النهاية، بدأ يتباطأ.

المشكلة هي أنه لا قوانين القياس ولا «قانون مور» هي قوانين الطبيعة الثابتة. إنها ببساطة ملاحظات ذكية. صمد أحدها لعقود من الزمن. وقد يكون للقوانين الأخرى عمر افتراضي أقصر بكثير؛ إذ لا تستطيع «غوغل» و«أنثروبيك» إلقاء المزيد من النصوص على أنظمة الذكاء الاصطناعي الخاصة بهما، لأنه لم يتبقَّ سوى القليل من النصوص لإلقائها.

«لقد كانت هناك عائدات غير عادية على مدى السنوات الثلاث أو الأربع الماضية، مع بدء تطبيق قوانين التوسع»، كما قال هاسابيس. «لكننا لم نعد نحصل على نفس التقدم».

آلة تضاهي قوة العقل البشري

وقال هاسابيس إن التقنيات الحالية ستستمر في تحسين الذكاء الاصطناعي في بعض النواحي. لكنه قال إنه يعتقد أن هناك حاجة إلى أفكار جديدة تماماً للوصول إلى الهدف الذي تسعى إليه «غوغل» والعديد من الشركات الأخرى: آلة يمكنها أن تضاهي قوة الدماغ البشري.

أما إيليا سوتسكيفر، الذي كان له دور فعال في دفع الصناعة إلى التفكير الكبير، كباحث في كل من «غوغل» و«أوبن أيه آي»، قبل مغادرته إياها، لإنشاء شركة ناشئة جديدة، الربيع الماضي، طرح النقطة ذاتها خلال خطاب ألقاه هذا الشهر. قال: «لقد حققنا ذروة البيانات، ولن يكون هناك المزيد. علينا التعامل مع البيانات التي لدينا. لا يوجد سوى شبكة إنترنت واحدة».

بيانات مركبة اصطناعياً

يستكشف هاسابيس وآخرون نهجاً مختلفاً. إنهم يطورون طرقاً لنماذج اللغة الكبيرة للتعلُّم من تجربتهم وأخطائهم الخاصة. من خلال العمل على حل مشاكل رياضية مختلفة، على سبيل المثال، يمكن لنماذج اللغة أن تتعلم أي الطرق تؤدي إلى الإجابة الصحيحة، وأيها لا. في الأساس، تتدرب النماذج على البيانات التي تولِّدها بنفسها. يطلق الباحثون على هذا «البيانات الاصطناعية».

أصدرت «اوبن أيه آي» مؤخراً نظاماً جديداً يسمى «OpenAI o1» تم بناؤه بهذه الطريقة. لكن الطريقة تعمل فقط في مجالات مثل الرياضيات وبرمجة الحوسبة؛ حيث يوجد تمييز واضح بين الصواب والخطأ.

تباطؤ محتمل

على صعيد آخر، وخلال مكالمة مع المحللين، الشهر الماضي، سُئل هوانغ عن كيفية مساعدة شركته «نيفيديا» للعملاء في التغلب على تباطؤ محتمل، وما قد تكون العواقب على أعمالها. قال إن الأدلة أظهرت أنه لا يزال يتم تحقيق مكاسب، لكن الشركات كانت تختبر أيضاً عمليات وتقنيات جديدة على شرائح الذكاء الاصطناعي. وأضاف: «نتيجة لذلك، فإن الطلب على بنيتنا التحتية كبير حقاً». وعلى الرغم من ثقته في آفاق «نيفيديا»، فإن بعض أكبر عملاء الشركة يعترفون بأنهم يجب أن يستعدوا لاحتمال عدم تقدم الذكاء الاصطناعي بالسرعة المتوقَّعة.

وعن التباطؤ المحتمل قالت راشيل بيترسون، نائبة رئيس مراكز البيانات في شركة «ميتا»: «إنه سؤال رائع نظراً لكل الأموال التي يتم إنفاقها على هذا المشروع على نطاق واسع».

* خدمة «نيويورك تايمز»