أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

تُسهِّل الوصول إلى الإجابات بسرعة

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي
TT

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

أدوات الذكاء الاصطناعي في مجال البحث الأكاديمي

لا تحل محل الحكم والتقدير البشري والتحليل اللازم لعملية البحث العلمي إن بدء مشروع بحثي جديد بالنسبة إلى الطلبة والباحثين المتخصصين على حد سواء، يعني الغوص في المؤلفات الأكاديمية لفهم ما كتبه الآخرون بالفعل. ويمكن أن يستغرق ذلك وقتاً ليس بالقصير، حيث يتعين على الباحثين تتبع المقالات التي جرى نشرها في الدوريات العلمية، والبحث فيها من أجل بدء بحثهم وصياغة نتائجهم.

ذكاء اصطناعي «باحث»

مع ذلك تستهدف مجموعة متزايدة من الأدوات المزودة بتقنية الذكاء الاصطناعي جعل تلك العملية أسهل، حيث يمكنها أن تساعد الباحثين بشكل أسرع على العثور على الأوراق البحثية ذات الصلة، واستخراج المعلومات ذات الصلة منها، أو كلا الأمرين معاً. تقول بريان كيرش، مديرة المكتبة في «إلينوي كوليدج»: «قد تكون تلك طريقة نافعة حقاً لبدء البحث، خصوصاً بالنسبة إلى الطلبة الذين لم يجيدوا عملية البحث ويألفوها بعد، ما دام تعليمهم كيفية استخدامها يجري على نحو أخلاقي، وإخبارهم بأنهم يستطيعون التوسع بشكل يتجاوز نطاق استخدامها، بعد ذلك».

يمكن أن تساعد أداة تسمى «إليسيت» Elicit الباحثين على إجراء ما تُعرف باسم المراجعات المنهجية، التي تتضمن النظر في عدد كبير من الأبحاث المنشورة للعثور على إجابة عن سؤال، مثل تأثير دواء محدد على حالة مَرضية. ويقول جيمس برادي، مدير الهندسة في «إليسيت»: «إن الأمر (إجراء المراجعات) يدوي تماماً. إنه يحتاج إلى فرق من البشر تعمل لأشهر طويلة، ويكلف ذلك مئات الآلاف من الدولارات أو ربما الملايين».

يمكن لـ«إليسيت» تنفيذ تلك العملية بشكل أسرع، وكذلك مساعدة الباحثين من خلال العثور سريعاً على أوراق بحثية منشورة متعلقة بسؤال محدد وتلخيصها. كذلك يمكنها توليد جداول تصف مجموعة كاملة من الأوراق البحثية ذات الصلة، تتضمن أعمدة لنقاط البيانات مثل الخوارزميات، والتقنيات الإحصائية المستخدمة، والعوامل المتغيرة التي تم فحصها، وعدد المشاركين في التجارب.

وتوصي الشركة الباحثين مع ذلك بالنظر في الأوراق البحثية الأصلية. ويؤكد برادي أن تلك الأداة لا تحل محل الحكم والتقدير البشري، والتحليل اللازم لعملية البحث العلمي. ويوضح قائلاً: «لا يشبه الأمر الوصول إلى الخطوة النهائية في (إليسيت) والنقر على زر النشر، لينتهي بك الحال إلى دورية (نيتشر) العلمية أو ما شابه»، مع ذلك يمكنك تسريع عملية تمحيص وفهم الأعمال السابقة.

تقنيات بحث للطلبة

يمثل فهم كيفية مساعدة الذكاء الاصطناعي لمجال البحث الأكاديمي جزءاً من سؤال أكبر في المجال، وهو: كيف ومتى يمكن للتكنولوجيا أن تحل محل الشبكة التقليدية لأدوات البحث، أو تصبح مكمِّلة لها؟ أدرك علماء الكومبيوتر منذ التسعينات أن محيط النشر الأكاديمي، الذي يقتبس فيه الباحثون من الأوراق البحثية بعضهم من بعض، وينشرون عملهم في دوريات علمية ذات سمعة جيدة في مجال محدد، لا يختلف كثيراً عن بيئة الإنترنت. ويعني ذلك إمكانية انتقال تقنيات العثور على مواد ذات صلة، وتقليل أخطاء وهلاوس الذكاء الاصطناعي إلى الحد الأدنى، وتقديم نتائج مفيدة وقابلة للإثبات للمستخدم من المجال الأكاديمي إلى شبكة الإنترنت الأوسع نطاقاً.

بطبيعة الحال لا يكون جميع من يبحثون عن إجابات علمية من العلماء المتخصصين. وتقول المؤسسات، التي تقف وراء نشر تلك الأدوات، إنه من الممكن أن تصبح تلك الأدوات مفيدة بشكل خاص للأشخاص الذين يتطلعون إلى فهم مجالات جديدة يهتمون بها، سواء كانوا طلبة أو متخصصين يُجرون عملاً متداخلاً معرفياً، أو أفراد من عامة الشعب مهتمين بموضوع ما. ويقول إيريك أولسون، أحد مؤسسي محرك البحث «كونسينسيس إيه آي» Consensus، والرئيس التنفيذي له، إن نحو 50 في المائة من أدوات البحث العلمي توجد في المؤسسات الأكاديمية، حيث كثيراً ما يستخدمها طلبة السنة الجامعية النهائية. ويوضح قائلاً: «عادةً ما نبلي جيداً مع الأشخاص الذين يحتاجون إلى طريقة سهلة وسريعة في البحث، لكن ليسوا خبراء بعد».

لغة استفسارات طبيعية

يسمح «كونسينسيس» للمستخدمين بالكتابة بلغة طبيعية تلقائية استفسارات لتلقي أجوبة موجزة مستقاة من أعمال منشورة. ويُظهر المحرك ملخصات لأوراق بحثية محددة، وبيانات تعريفية وصفية، مثل سنة النشر، وعدد الاقتباسات، وإشارة إلى مدى الإجماع والتوافق العلمي على مسألة بعينها.

ومن المستخدمين غير المتخصصين لهذه الأداة، العاملون في مجال الرعاية الصحية مثل الأطباء الذين يستخدمون هذه الأداة من أجل الحصول على معلومات متبصرة بطريقة أسرع من تلك التي توفرها محركات البحث الأكاديمية التقليدية أو محرك البحث «غوغل». كذلك يستعين المستخدمون بمحرك البحث «كونسينسيس» من أجل البحث في الموضوعات المتعلقة بالصحة، وممارسات تربية الأبناء، والأمور السياسية في الأخبار، على حد قول أولسون.

لا تعتمد شركة «كونسينسيس»، مثلها مثل الشركات الأخرى في هذا المجال، فقط على نموذج لغات كبير يستند إلى نمط «المحوّل التوليدي المدرب مسبقاً» (الذي تعتمد عليه تطبيقات الدردشة) من أجل تقديم إجابات للمستخدم.

وتوفر الشركة محرك بحث عاماً للعثور على أوراق بحثية تتناول مسألة أو استفسار، ومجموعة متنوعة من نماذج اللغة المدربة جيداً لاستخلاص معلومات ذات صلة. والأهم من ذلك التحقق من أن تلك الورقة البحثية متعلقة بالموضوع، مما يحد من احتمالات توضيح نموذج ذكاء اصطناعي متحمس حقائق ليست موجودة فعلياً. يقول أولسون: «سوف أتيح وصول الأمر إلى النموذج فقط، إذا كنا نعتقد أن لديه حقاً معلومة أو رؤى متبصرة ذات صلة به. إنها حيلة رائعة للحد من خطر تأويل الورقة البحثية بشكل خاطئ».

إجابات موجزة

وقد طوّرت شركة «إلسفير»، التي تعمل في مجال النشر الأكاديمي، أداة ذكاء اصطناعي تسمى «سكوبوس إيه آي» Scopus AI للبحث في الأبحاث التي تم جمعها في قاعدة البيانات الخاصة بـ«سكوبوس»، والتي تتضمن ملخصات لمقالات، وبيانات تعريفية، من عشرات الآلاف من الدوريات العلمية، تشمل تلك التي نشرتها دور نشر منافسة.

ويمكن لـ«سكوبوس» توليد إجابات موجزة استناداً إلى استفسارات محددة، واقتراح أسئلة إضافية لمساعدة المستخدمين في توسيع نطاق معرفتهم بالمجال، وتسليط الضوء على مؤلفي «الأوراق البحثية الأساسية» و«الخبراء في الموضوع» الذين تركوا أثراً خاصاً في مجال الخبرة المذكور. يقول ماكسيم خان، نائب رئيس شؤون المنتجات التحليلية ومنصة البيانات في «إلسفير»: «وجدنا أن هذا احتياج مشترك لدى عدد من الأشخاص المختلفين الذين يقفون عند منحدر محاولة فهم اختصاص آخر». ويقول خان إن المستخدمين أكدوا أن المحرك يساعدهم على فهم المجالات الجديدة على نحو أسرع، ويستعرض أوراقاً بحثية لم يكونوا ليكتشفوها لولاه. وبسبب شروط الترخيص، لا تتضمن الأداة عرض النص الكامل، مما يعني أن المستخدمين لا يستطيعون الاستفسار بشكل مباشر عن المادة في مقالات تتجاوز الملخصات والاقتباسات.

يمكن لبرامج أخرى مساعدة المستخدمين على التعمق داخل أبحاث محددة. وتسمح أداة ذكاء اصطناعي من «جيه ستور» JStor، وإن كان حجمها لا يزال محدوداً، للمستخدمين بالاطلاع على ملخصات المقالات المناسبة لاستفساراتهم المحددة، ويمكنها الإجابة عن الأسئلة استناداً إلى المحتوى من الوثائق، والإشارة إلى فقرات محددة تتضمن الإجابة. يمكن لذلك أن يساعد المستخدمين في اكتشاف الأوراق البحثية ذات الصلة لقراءتها بتمعن بعد ذلك، ويمكن للأداة أيضاً الإشارة إلى موضوعات أخرى، أو أوراق بحثية محددة لينظر فيها المستخدم استناداً إلى فقرات محددة.

* «مجلة «فاست كومباني»

ـ خدمات «تريبيون ميديا»



لأول مرة: تنبؤات الذكاء الاصطناعي الدقيقة لقوة الأعاصير تتفوق على دقة النظم الكومبيوترية

التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
TT

لأول مرة: تنبؤات الذكاء الاصطناعي الدقيقة لقوة الأعاصير تتفوق على دقة النظم الكومبيوترية

التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها
التنبؤ الدقيق بالأعاصير يقلل من حجم الكوارث الناجمة عنها

كنت أدرس الأعاصير وأتنبأ بها وأكتب عنها لأكثر من عقدين من الزمان، منذ وقت طويل عندما كنا نرسم خرائط الطقس يدوياً، كما كتب إريك هولثاوس (*).

توقعات الذكاء الاصطناعي الدقيقة للطقس

إلا أن إعصارَي «هيلين» و«ميلتون» كانا أول إعصارين اعتمدت فيهما بشدة على توقعات الطقس التي تم إنشاؤها بواسطة الذكاء الاصطناعي. ويبدو هذا الأمر وكأنه نقطة تحول.

وفي عصرنا الحالي الذي يتسم بحالة الطوارئ المناخية المتصاعدة، تساعد الأجواء الدافئة في جعل الطقس أكثر تطرفاً وخطورة، مما يعرض مزيداً من الناس للخطر كل عام. ولذا فإن التنبؤات الأكثر ثقة بتلك الأعاصير التي ستتحول إلى وحش أو التي ستتلاشى بأمان، تمنح الناس مزيداً من الوقت للاستعداد.

تحديث تطور الأعاصير ساعة بساعة

خلال إعصاري «هيلين» و«ميلتون»، تم تطوير أداة الذكاء الاصطناعي التي استخدمتها كثيراً -AI RI- بواسطة باحثين في جامعة ويسكونسن. وهي تقدم احتمالات محدثة كل ساعة حول فرص حدوث نوبة من التكثيف السريع لسيرورة إعصار ناشئ جديد.

في مرحلة ما، كانت هذه الأداة (AI RI) تعطي فرصة بنسبة 100 في المائة تقريباً بأن «ميلتون» سيزداد قوة ليتحول من الفئة 1 إلى الفئة 5 في غضون 24 ساعة قادمة. وبالطبع، تبين أن هذا التنبؤ صحيح.

ولم يشهد أي إعصار أطلسي في 175 عاماً من تسجيلاتنا للأعاصير تعززاً في قوته، مثل إعصار «ميلتون». ولم يكن لأحد أن يتصور حدوث مثل هذا.

تنبؤات غير مسبوقة

هذا التنبؤ الدقيق حتى قبل 5 سنوات كان صعباً باستخدام نماذج الطقس الحاسوبية التقليدية.

قبل قرن واحد فقط، كان من المستحيل تقريباً وضع توقعات للظروف الجوية المعاكسة بشكل موثوق، ضمن أي نطاق زمني. ولإعطاء فكرة عن حجم التقدم، فإن التنبؤ بالطقس لمدة 4 أيام أصبح الآن دقيقاً، مثلما كان حال التنبؤ بالطقس ليوم واحد في عام 1995.

ويعِد الذكاء الاصطناعي بتمديد هذه المكاسب أياماً وأسابيع وأشهراً في المستقبل، وعلى مقاييس جغرافية أدق وأدق، حتى على مستوى المناخ المحلي والحي.

** في غضون 25 عاماً، من المتوقع أن تكلف التأثيرات الإجمالية لتغير المناخ تريليونات الدولارات سنوياً **

كلفة الكوارث الطبيعية

وحتى بعد تعديل التضخم النقدي، تكلف الكوارث الطبيعية الآن نحو 5 أضعاف ما كانت عليه في الثمانينات. ويمكن أن تمثل التقلبات الجوية اليومية ما يصل إلى 3 في المائة- 6 في المائة، من الناتج المحلي الإجمالي سنوياً. أما الفيضانات الناجمة عن هطول الأمطار الشديدة وحدها، مثل تلك التي نجمت عن «هيلين»، فتكلف الآن ما متوسطه 1 في المائة من الناتج المحلي الإجمالي للولايات المتحدة كل عام.

وفي غضون 25 عاماً، من المتوقع أن تكلف التأثيرات الإجمالية لتغير المناخ تريليونات الدولارات سنوياً.

تطبيق ذكاء اصطناعي على كومبيوتر محمول

ورداً على سؤالي: «لقد فوجئت قليلاً بأن عمليات التشغيل الروتينية لنموذج التكثيف السريع لا تتطلب أي طاقة حاسوبية على الإطلاق»، تقول سارة غريفين، الخبيرة في الأعاصير والأقمار الاصطناعية في جامعة ويسكونسن التي طورت أداة الذكاء الاصطناعي: «إنها لا تحتاج إلى أي شيء فاخر؛ إذ لا توجد حاجة إلى وحدة معالجة رسومية، وعادة ما تعمل في أقل من دقيقة».

** الذكاء الاصطناعي يغيِّر عمل خبراء الأرصاد الجوية**

قبل البداية السريعة لأدوات الذكاء الاصطناعي، تم تطوير أفضل نموذج حاسوبي للأعاصير بتكلفة 150 مليون دولار. وكان لا بد من تشغيله على أحد أسرع أجهزة الكومبيوتر في العالم.

لذا فإن حقيقة أنه يمكن تشغيل «AI RI» من الناحية النظرية، خلال بضع دقائق على جهاز كومبيوتر محمول، أشبه بالسحر. وقد ظلت إدارة الأرصاد الجوية الوطنية ومنظمتها الأم (NOAA) لسنوات، تستثمر في الذكاء الاصطناعي والتعلم الآلي لمساعدة علمائها على غربلة كميات هائلة من البيانات البيئية التي يجمعونها كل يوم.

وتؤتي هذه الاستثمارات ثمارها بالفعل، وبشكل كبير، وخصوصاً عندما يتعلق الأمر بجعل تكنولوجيا التنبؤ بالطقس أكثر فائدة للمجتمعات المحرومة والأشخاص على الخطوط الأمامية لحالة الطوارئ المناخية.

50 عاماً من نماذج الطقس الكومبيوترية

عرض الرادار من طائرة صيد الأعاصير التابعة للإدارة الوطنية للمحيطات والغلاف الجوي

منذ اختراعها قبل نحو 50 عاماً، كانت نماذج الطقس بمساعدة الكومبيوتر تُشغَّل دائماً تقريباً على أكبر أجهزة الكومبيوتر التي يستطيع العلماء تحمل تكلفتها. وذلك لأن مئات الحسابات الرياضية والفيزيائية يجب إجراؤها مراراً وتكراراً لتتبع جميع المسارات المحتملة للأمام في الوقت المناسب لكل جزء من الغلاف الجوي الذي توجد بيانات عنه، بقدر ما يمكن جمع هذه البيانات. إنها دورة لا تنتهي أبداً من الخيارات الصعبة حول كيفية تركيز قوة الحوسبة النادرة بأكبر قدر من الكفاءة، وهو صراع صعب جداً ضد قوى الطبيعة.

وهذا يعني أن التنبؤ بالطقس كان مكلفاً دائماً، كما أن عدم المساواة صارخ؛ إذ تنفق الحكومات في البلدان الأكثر ثراءً -مثل الولايات المتحدة وأوروبا- ما معدله نحو 25 دولاراً سنوياً لكل مواطن على توقعات الطقس الخاصة بها، بينما تنفق البلدان الأكثر فقراً أقل من دولار واحد سنوياً لكل مواطن، الأمر الذي يؤدي إلى انخفاض دقة التوقعات بالنسبة للأشخاص الذين من المرجح أن يشاركوا في أنشطة حساسة للطقس، مثل الزراعة أو صيد الأسماك.

الذكاء الاصطناعي يحقق المساواة المناخية العالمية

ومن أفضل جوانب الذكاء الاصطناعي قدرته على تحقيق المساواة في هذا المجال. وللتعرف على مزيد حول هذا الموضوع، تحدثت مع مايكل فيشر الباحث في مجال الأعاصير، وأستاذ الأرصاد الجوية في جامعة ميامي. وميامي هي قلب عالم التنبؤ بالأعاصير، فهي المكان الذي يوجد فيه خبراء التنبؤ بالأعاصير الرسميون التابعون للمركز الوطني للأعاصير، كما أنها موطن «صائدي الأعاصير»، وهم قسم من احتياطي القوات الجوية الأميركية الذي كان لعقود من الزمان يطير بالطائرات عبر الأعاصير لقياس موقعها وحركتها وقوتها.

تحسين مُدخلات البيانات

يركز عمل فيشر على تحسين التنبؤ بالأعاصير، وخصوصاً فائدة رادارات الطقس المحمولة جواً على طائرات صائدي الأعاصير. ويقول: «أعتقد أن الذكاء الاصطناعي يفتح كثيراً من الأبواب التي ليست ممكنة بالضرورة، على الأقل مع القدرات الحسابية الحالية؛ لأن هذه النماذج يمكن أن تعمل بسرعة كبيرة». ويضيف: «إنه يسمح لنا بالقيام بأشياء، مثل إنشاء توقعات عالية الدقة للمناطق المحلية، ونأمل أن يساعد ذلك في إنقاذ الأرواح، إضافة إلى جوانب أخرى مثل موجات الحر والطقس المتطرف والأمطار الغزيرة».

إنني كبير السن بما يكفي لأتذكر عندما كنت طالباً جامعياً في عام 2000 عندما بدأت نماذج الطقس الحاسوبية المبكرة في التفوق بشكل موثوق على مهارة المتنبئين البشريين. ومع ذلك، لم يثق أساتذتي بها، وبدلاً من ذلك كانوا يعلموننا صفحات من «القواعد الأساسية» و«الحيل البسيطة» لتقدير التوقعات بناءً على التعرف على الأنماط في خرائط الطقس.

لكن هناك شيئاً واحداً قالوه عن بناء نموذج طقس حاسوبي جدير بالاهتمام ظل عالقاً في ذهني حقاً: «القمامة تدخل، والقمامة تخرج». وهذا يعني أن توقعات الكومبيوتر الخاصة بك لا تكون جيدة إلا بقدر البيانات التي تبدأ بها. وهذا هو هدف مشروع تحسين توقعات الأعاصير الذي أطلقه فيشر، لاستخدام التعلم الآلي لمراقبة جودة البيانات المتدفقة من صائدي الأعاصير أثناء طيرانهم.

يقول فيشر إن الأمر يستغرق من عالم الأرصاد الجوية المدرب نحو أسبوعين لتصفية «الضوضاء» يدوياً من رادار الطائرة. يمكن لنموذج الذكاء الاصطناعي الخاص به القيام بذلك في دقائق، بينما لا تزال الطائرة في الهواء، بحيث يمكن بعد ذلك إرسال البيانات في الوقت الفعلي إلى نماذج الطقس للتوصل إلى توقعات.

نماذج طقس حكومية وخاصة

واليوم، بالطبع، ليست هيئة الأرصاد الجوية الوطنية هي الوحيدة التي تستثمر في تحسين نماذج الطقس باستخدام الذكاء الاصطناعي، فكل الأسماء الكبيرة في مجال الذكاء الاصطناعي تفعل ذلك أيضاً.

تمتلك «غوغل» GraphCast، بينما تمتلك «نيفيديا» FourCastNet. وتعِدُ الشركات الناشئة –مثل «precip.ai» و«atmo.ai»- عملاءها بتحليلات الطقس المحلية والدقيقة للغاية لجميع أنواع الاستخدامات. وتجعل «غوغل» أحدث نموذج للطقس المعزز بالذكاء الاصطناعي مفتوح المصدر. قد يكون التنبؤ بالطقس نقطة مضيئة نادرة في مجال الذكاء الاصطناعي؛ خصوصاً مع زيادة الحاجة بسبب تصاعد مخاطر المناخ.

تستخدم هيئة الأرصاد الجوية الوطنية الذكاء الاصطناعي في خدمة ترجمة لغة جديدة لنشرات الطقس، لجعل التوقعات في متناول الجميع بحيث لا تقتصر على اللغة الإنجليزية فقط.

مخاوف تحيّز الذكاء الاصطناعي

إلا أن فيشر يشعر ببعض المخاوف المألوفة، وخصوصاً بشأن التحيز الذي قد يقدمه فريقه أثناء تدريبهم للذكاء الاصطناعي؛ لكنه يعتقد في الوقت الحالي أن الأداة يمكن استخدامها بشكل متوازن.

وتمنح مشاركة شركات التكنولوجيا الكبرى فيشر الأمل في أن روح التعاون هذه في مواجهة حالة الطوارئ المناخية قد تستمر. ويقول: «إذا كان هدفنا الرئيسي هو محاولة المساعدة في إنقاذ الأرواح وحماية الممتلكات، فأعتقد أن العمل معاً بوصفنا مجتمعاً علمياً هو أفضل طريقة للقيام بذلك»،

* مجلة «فاست كومباني»، خدمات «تريبيون ميديا».