«خلايا الحساسية» تحتجز خلايا مناعية لمحاربة المؤثرات الخارجية

اكتشاف يسلّط الضوء على التعقيدات الخفية للجهاز المناعي

أنواع من خلايا الجهاز المناعي وتظهر فيها «الخلايا البدينة» في الصف الأعلى (الثالثة من اليسار) في حين تظهر «العدلات» في الصف الأسفل (الأولى من اليسار)
أنواع من خلايا الجهاز المناعي وتظهر فيها «الخلايا البدينة» في الصف الأعلى (الثالثة من اليسار) في حين تظهر «العدلات» في الصف الأسفل (الأولى من اليسار)
TT

«خلايا الحساسية» تحتجز خلايا مناعية لمحاربة المؤثرات الخارجية

أنواع من خلايا الجهاز المناعي وتظهر فيها «الخلايا البدينة» في الصف الأعلى (الثالثة من اليسار) في حين تظهر «العدلات» في الصف الأسفل (الأولى من اليسار)
أنواع من خلايا الجهاز المناعي وتظهر فيها «الخلايا البدينة» في الصف الأعلى (الثالثة من اليسار) في حين تظهر «العدلات» في الصف الأسفل (الأولى من اليسار)

كشفت دراسة حديثة عن دور غير متوقع للخلايا البدينة في الجهاز المناعي، إذ تبيّن أنها قادرة على التقاط خلايا مناعية أخرى واستخدامها تُسمّى «العدلات»، وهي نوع من الخلايا البيضاء التي تؤدي دوراً مهماً في محاربة العدوى والالتهابات.

الاكتشاف الجديد

ويوضح الاكتشاف أن الخلايا البدينة لا تقتصر على إطلاق مواد كيميائية، مثل: الهيستامين، والهيبارين، التي تسبّب الأعراض المصاحبة للحساسية النموذجية المعروفة، مثل: تورم الأنسجة والالتهاب، بل يمكنها أيضاً الاستفادة من «العدلات» لتعزيز استجابتها المضادة لمسببات الحساسية.

الأمر المدهش، الذي كشفت عنه هذه الدراسة المنشورة في مجلة «Cell» في 2 أغسطس (آب) 2024 من معهد «ماكس بلانك» لعلم الأحياء المناعي وعلم الوراثة اللاجينية في فرايبورغ سويسرا، وجامعة «مونستر» في ألمانيا، هو قدرة الخلايا البدينة (Mast cells) على التقاط خلايا مناعية أخرى واستخدامها، تُسمى «العدلات» (Neutrophils).

وكان من المعروف سابقاً أن «العدلات» تعمل بصفة مستقلة عن الخلايا البدينة في إحداث الاستجابة (ردة الفعل) المناعية. ولكن هذا الاكتشاف يشير إلى أن الخلايا البدينة يمكنها أن تستفيد من «العدلات» بطرق غير متوقعة لتعزيز استجابتها الالتهابية.

يلقي هذا الاكتشاف الضوء على التعقيدات الخفية للجهاز المناعي، ويعزّز فهمنا لكيفية تنظيم الاستجابات التحسسية. وتؤكد الدراسة أن الخلايا البدينة ليست مجرد خلايا تطلق مواد مسببة للحساسية، ولكنها أيضاً يمكن أن تتفاعل مع أنواع أخرى من الخلايا المناعية لتنسيق استجابة أكثر شمولية وديناميكية ضد المسببات.

الاستجابة المناعية والالتهابات

يُعد الالتهاب جزءاً أساسياً من الاستجابة المناعية، لكن إذا خرج عن السيطرة يمكن أن يؤدي إلى تدمير الأنسجة والأمراض. وعادة ما يتمحوّر الالتهاب حول رد فعل الجسم تجاه المنبهات الضارة مثل مسببات الحساسية.

ويصاحب الالتهاب بارتفاع درجة الحرارة والألم والاحمرار والتورم وفقدان وظيفة الأنسجة، لذلك فإن فهم كيفية عمل الخلايا المناعية، مثل: الخلايا البدينة و«العدلات» معاً يمكن أن يساعد في تطوير علاجات جديدة للأمراض المرتبطة بالالتهابات المفرطة أو الاستجابات التحسسية الشديدة، مثل: الحساسية المفرطة (Anaphylaxis). وتفتح هذه النتائج أفقاً جديداً في أبحاث الحساسية والالتهاب، وقد تكون لها تأثيرات كبيرة في تطوير استراتيجيات علاجية أكثر فاعلية للأمراض المناعية والحساسية.

ووظّف العلماء تقنية الفحص المجهري المتخصص لتصوير هذه التفاعلات في الوقت الفعلي داخل أنسجة الفأر الحية. وأظهر هذا التصوير أن «العدلات» يمكن أن توجد داخل الخلايا البدينة الحية، وهي ظاهرة كانت غير متوقعة تماماً.

وكان فريق علمي، بقيادة تيم لامرمان مدير معهد الكيمياء الحيوية الطبية بجامعة «مونستر»، قد اكتشف منذ أكتوبر (تشرين الأول) 2023 هذا الأمر غير المتوقع تماماً، ما يبرز أهمية استخدام تقنيات الفحص المجهري المتطورة لفهم العمليات البيولوجية المعقدة داخل الكائنات الحية.

«الخلايا البدينة» تحتجز «العدلات»

تُعد «العدلات» المدافعة في الخطوط الأمامية عن نظام المناعة لدى الإنسان. وهي تستجيب بسرعة وعلى نطاق واسع إلى التهديدات المحتملة، وتدور في الدم وتخرج بسرعة من الأوعية الدموية في مواقع الالتهاب. كما أنها مجهزة تجهيزاً جيداً لمكافحة الغزاة، مثل: البكتيريا أو الفطريات، وذلك عن طريق اجتياح الغزاة أو إطلاق مواد مضادة للميكروبات أو تشكيل مصائد تُعرف باسم «مصائد العدلات خارج الخلية». بالإضافة إلى ذلك يمكن لـ«العدلات» التواصل مع بعضها وتشكيل أسراب من الخلايا لدمج وظائفها الفردية لحماية الأنسجة السليمة.

وبينما نعرف كثيراً عن دور «العدلات» في الالتهابات والإصابات، إلا أن دورها في الالتهاب الناجم عن ردود الفعل التحسسية لا يزال غير مفهوم. ويوضح مايكل ميهلان، المؤلف الأول والمشارك في الدراسة من معهد «الكيمياء الحيوية الطبية مركز البيولوجيا الجزيئية للالتهاب» بجامعة «مونستر» في ألمانيا، أنه وبمجرد أن تمكّن الفريق من محاكاة اصطياد «العدلات» الذي لُوحظ في الأنسجة الحية في زراعة الخلايا تمكّنا من تحديد المسارات الجزيئية المشاركة بالعملية.

ووجد الباحثون أن الخلايا البدينة تطلق «الليكوترين» (B4 (leukotriene (وهي مادة تُستخدم عادة من قبل «العدلات»، ولكي تبدأ التحشد يجري إنتاجها من الكريات البيض، والمادة قادرة على تحفيز التصاق الكريات البيض وتنشيطها على الأغشية الداخلية للأوعية الدموية واللمفاوية؛ ما يسمح لها بالارتباط وعبورها إلى الأنسجة).

ومن خلال إفراز هذه المادة تجذب الخلايا البدينة «العدلات»، وبمجرد أن تكون «العدلات» قريبة بدرجة كافية تبتلعها الخلايا البدينة في فجوة وتشكّل بنية خلية داخل أخرى سماها الباحثون باسم «مصيدة الخلايا البدينة داخل الخلايا» (mast cell intracellular trap).

تعزيز وظيفة الخلايا البدينة

وتوصل الباحثون إلى اكتشاف جديد يظهر أن الخلايا البدينة ليست مسؤولة عن إطلاق ردود الفعل التحسسية فحسب، ولكنها تمتلك أيضاً قدرة على إعادة تدوير «العدلات» لتعزيز وظيفتها الخاصة. وفي هذه الدراسة التي أُجريت بتعاون دولي أكد الباحثون تكوين هياكل معينة تسمّى «مصيدة الخلايا البدينة» داخل الخلايا في العينات البشرية، ودرسوا مصير «العدلات» بعد أن تلتقطها الخلايا البدينة، ووجدوا أن «العدلات» المحاصرة تموت في النهاية. وتقوم الخلايا البدينة بتخزين بقاياها داخلها، ولكن المفاجأة كانت أن الخلايا البدينة لا تتخلص من هذه البقايا ببساطة، بل تُعيد تدوير المواد الموجودة في «العدلات» لتعزيز قدراتها ووظائفها، وهو ما يعزّز من نشاط الخلايا البدينة.



«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية
TT

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«جراح آلي» بذكاء اصطناعي دُرّب على مشاهدة فيديوهات طبية

«تخيل أنك بحاجة إلى إجراء عملية جراحية في غضون بضع دقائق لأنك قد لا تنجو... لا يوجد جراحون في الجوار ولكن يوجد روبوت جراحي مستقل متاح يمكنه إجراء هذا الإجراء باحتمالية عالية جداً للنجاح، هل ستغتنم الفرصة؟» هذا ما أجابني به طالب ما بعد الدكتوراه بجامعة جونز هوبكنز عبر البريد الإلكتروني، لدى سؤالي عن التطوير الجديد.

تعليم الروبوت بمقاطع فيديو للجراحة

لأول مرة في التاريخ، تمكن كيم وزملاؤه من تعليم الذكاء الاصطناعي استخدام آلة جراحة آلية لأداء مهام جراحية دقيقة، من خلال جعلها تشاهد آلاف الساعات من الإجراءات الفعلية التي تحدث في ردهات جراحية حقيقية. ويقول فريق البحث إنه تطور رائد يتجاوز حدوداً طبية محددة ويفتح الطريق لعصر جديد في الرعاية الصحية.

وفقاً لورقتهم البحثية المنشورة حديثاً، يقول الباحثون إن الذكاء الاصطناعي تمكن من تحقيق مستوى أداء مماثل لجراحي البشر دون برمجة مسبقة.

جراحة بتوظيف الروبوت

تدريب على العروض بدلاً من البرمجة

وبدلاً من محاولة برمجة الروبوت بشق الأنفس للعمل -وهو ما تقول ورقة البحث إنه فشل دائماً في الماضي- قاموا بتدريب هذا الذكاء الاصطناعي من خلال شيء يسمى التعلم بالتقليد، وهو فرع من الذكاء الاصطناعي حيث تراقب الآلة وتكرر الأفعال البشرية. سمح هذا للذكاء الاصطناعي بتعلم التسلسلات المعقدة للأفعال المطلوبة لإكمال المهام الجراحية عن طريق تقسيمها إلى مكونات حركية. وتترجم هذه المكونات إلى أفعال أبسط -مثل زوايا المفاصل ومواضعها ومساراتها- والتي يسهل فهمها وتكرارها وتكييفها أثناء الجراحة.

توظيف روبوت «دافنشي» للتدريب

استخدم كيم وزملاؤه نظام دافنشي الجراحي كأيدٍ وعيون لهذا الذكاء الاصطناعي. ولكن قبل استخدام المنصة الروبوتية الراسخة (التي يستخدمها الجراحون حالياً لإجراء عمليات دقيقة محلياً وعن بُعد) لإثبات نجاح الذكاء الاصطناعي الجديد، قاموا أيضاً بتشغيل محاكاة افتراضية. وقد سمح هذا بتكرار أسرع وتحقق من السلامة قبل تطبيق الإجراءات التي تم تعلمها على الأجهزة الفعلية.

«كل ما نحتاجه هو إدخال الصورة، ثم يجد نظام الذكاء الاصطناعي هذا الإجراء الصحيح»، كما يقول كيم. كانت روبوتات دافنشي أيضاً مصدر مقاطع الفيديو التي حللها الذكاء الاصطناعي، باستخدام أكثر من 10000 تسجيل تم التقاطها بواسطة كاميرات المعصم أثناء العمليات الجراحية التي يقودها الإنسان.

تعلّم 3 مهام جراحية

وكان الهدف تعلم ثلاث مهام جراحية: التعامل مع إبرة جراحية وتحديد موضعها، ورفع الأنسجة والتلاعب بها بعناية، والخياطة -كلها مهام معقدة تتطلب تحكماً دقيقاً وحساساً للغاية.

مكنت مجموعة البيانات واسعة النطاق هذه الذكاء الاصطناعي من تعلم الاختلافات الدقيقة بين الإجراءات الجراحية المتشابهة، مثل شدة التوتر المناسب اللازم للتعامل مع الأنسجة دون التسبب في ضرر.

تعد مقاطع الفيديو التدريبية هذه جزءاً صغيراً جداً من مستودع واسع النطاق للبيانات الجراحية. مع ما يقرب من 7000 روبوت دافنشي قيد الاستخدام في جميع أنحاء العالم، هناك مكتبة ضخمة من العروض الجراحية للمراقبة والتعلم منها، والتي يستخدمها فريق البحث الآن لتوسيع ذخيرة الذكاء الاصطناعي الجراحية لدراسة جديدة لم تُنشر بعد.

«في عملنا المتابع، والذي سنصدره قريباً، ندرس ما إذا كانت هذه النماذج يمكن أن تعمل في الإجراءات الجراحية طويلة المدى التي تنطوي على هياكل تشريحية غير مرئية»، يكتب كيم، في إشارة إلى الإجراءات الجراحية المعقدة التي تتطلب التكيف مع حالة المريض في أي وقت معين، مثل إجراء عملية جراحية على جرح داخلي خطير.

التحقق من صحة النموذج المطور

أثناء التطوير، عمل الفريق عن كثب مع الجراحين الممارسين لتقييم أداء النموذج وتقديم ملاحظات حاسمة (خاصة فيما يتعلق بالتعامل الدقيق مع الأنسجة)، والتي قام الروبوت بدمجها في عملية التعلم الخاصة به.

أخيراً، للتحقق من صحة النموذج، استخدموا مجموعة بيانات منفصلة غير مدرجة في التدريب الأولي لإنشاء محاكاة افتراضية، ما يضمن قدرة الذكاء الاصطناعي على التكيف مع السيناريوهات الجراحية الجديدة وغير المرئية قبل الشروع في اختبارها في الإجراءات المادية. أكد هذا التحقق المتبادل قدرة الروبوت على التعميم بدلاً من مجرد حفظ الإجراءات، وهو أمر بالغ الأهمية بالطبع نظراً للعدد المجهول المحتمل الذي قد ينشأ في غرفة العمليات.

جراح آلي «ذو خبرة»

كل شيء سار بشكل جميل إذ تعلم نموذج الروبوت هذه المهام إلى مستوى الجراحين ذوي الخبرة. يقول أكسل كريغر، الأستاذ المساعد في الهندسة الميكانيكية في جامعة جونز هوبكنز والمؤلف الرئيسي للدراسة، في بيان عبر البريد الإلكتروني: «إنه لأمر سحري حقاً أن يكون لدينا هذا النموذج حيث كل ما نقوم به هو تلقيمه مدخلات الكاميرا، ويمكنه التنبؤ بالحركات الروبوتية اللازمة للجراحة». «نعتقد أن هذا يمثل خطوة مهمة إلى الأمام نحو أفق جديد في مجال الروبوتات الطبية».

تطوير رائد

إن أحد مفاتيح هذا النجاح هو استخدام الحركات النسبية بدلاً من التعليمات المطلقة. ففي نظام دافنشي قد لا تنتهي الأذرع الآلية إلى حيث هي مقصودة تماماً بسبب التناقضات الطفيفة في حركة المفصل التي تتراكم على مدار عدة حركات ويمكن أن تؤدي في النهاية إلى أخطاء كبيرة -خاصة في بيئة حساسة مثل الجراحة. كان على الفريق إيجاد حل، لذا بدلاً من الاعتماد على هذه القياسات، قام بتدريب النموذج على التحرك بناءً على ما يلاحظه في الوقت الفعلي أثناء إجراء العملية.

لكن الابتكار الرئيسي هنا هو أن التعلم بالتقليد يزيل الحاجة إلى البرمجة اليدوية للحركات الفردية. قبل هذا الاختراق، كانت برمجة الروبوت للخياطة تتطلب ترميزاً يدوياً لكل حركة بالتفصيل. يقول كيم إن هذه الطريقة كانت أيضاً عرضة للخطأ وتشكل قيداً رئيسياً في تقدم الجراحة الروبوتية. إذ إنها حدت مما يمكن للروبوت فعله بسبب جهود التطوير، والافتقار إلى المرونة التي جعلت من الصعب للغاية على الروبوتات القيام بمهام جديدة.

ومع ذلك، يسمح التعلم بالتقليد للروبوت بالتكيف بسرعة مع أي شيء يمكن مشاهدته، والتعلم على غرار طالب الجراحة. «(نحن) نحتاج فقط إلى جمع بيانات التعلم التقليدي لإجراءات مختلفة، ويمكننا تدريب الروبوت على تعلمها في غضون يومين»، كما يقول كريغر. «هذا يسمح لنا بالتعجيل نحو هدف الاستقلالية مع تقليل الأخطاء الطبية وتحقيق جراحة أكثر دقة».

تقييم مدى النجاح

لقياس مدى نجاح الذكاء الاصطناعي، حدد الباحثون مقاييس الأداء الرئيسية، مثل الدقة في وضع الإبرة والاتساق في التلاعب بالأنسجة باستخدام مجموعة من البيئات الجراحية الوهمية المادية، والتي تضمنت محاكيات الأنسجة الاصطناعية والدمى الجراحية. وكانت النتائج مذهلة. يقول كريغر: «النموذج جيد جداً في تعلم الأشياء التي لم نعلمه إياها. على سبيل المثال، إذا أسقط الإبرة، فسوف يلتقطها تلقائياً ويستمر».

لا تعد هذه القدرة على التكيف مهمة فقط لمواصلة تعلم مهارات جديدة ولكنها أيضاً ضرورية للتعامل مع الأحداث غير المتوقعة في الجراحات الحية، مثل تمزق الشريان أو تغير العلامات الحيوية للمريض فجأة. بالإضافة إلى ذلك، أظهر النموذج كفاءة زمنية محسنة، ما أدى إلى تقليل وقت الانتهاء للمهام الجراحية القياسية مثل الخياطة بنحو 30 في المائة، وهو أمر واعد بشكل خاص للعمليات الحرجة من حيث الوقت.

ويتصور العلماء سيناريو حيث تساعد هذه الروبوتات الجراحين في المواقف عالية الضغط، وتعزيز قدراتهم وتقليل الخطأ البشري. سيؤثر جراحو الذكاء الاصطناعي المستقبليون بشكل كبير على توفر الرعاية الجراحية، مما يجعل التدخلات الطبية عالية الجودة متاحة لعدد أكبر.

اللوائح التنظيمية وأخلاقيات الطب

هناك أيضاً تحديات أخلاقية وتنظيمية يجب معالجتها قبل نشر مثل هذا الذكاء الاصطناعي في بيئات جراحية حقيقية دون إشراف بشري. فالقفزة نحو الروبوتات الجراحية المستقلة تثير مخاوف أخلاقية جديدة.

هناك قضية المساءلة: من سيكون مسؤولاً إذا حدثت مشكلة؟ الشركة التي صنعت الجراح الذكي؟ المهنيون الطبيون الذين يشرفون عليه (إذا كان هناك أي إشراف)؟ هناك أيضاً مسألة موافقة المريض، والتي ستتطلب تثقيف كل من الشخص الذي يخضع للجراحة والأشخاص المحيطين به حول ماهية هذا الذكاء الاصطناعي، وما الذي يمكنهم فعله بالضبط، وما هي المخاطر التي تشكلها الروبوتات مقارنة بالجراحين البشر.

يعترف كيم بأن المستقبل الآن في منطقة رمادية حيث يمكن للجميع مجرد التكهن بما يجب أن يحدث أو سيحدث. ستكون أيدي السلطات التنظيمية مشغولة، من معالجة المساءلة والمخاوف الأخلاقية عند السماح لجراحي الذكاء الاصطناعي بالعمل بشكل مستقل، إلى وضع معايير للحصول على موافقة مستنيرة من المرضى.

ولكن عند الاختيار بين إجراء عملية جراحية طارئة منقذة للحياة بواسطة جراح مستقل أو عدم تلقي العلاج لأن الجراح البشري غير متاح (مثلاً في مكان بعيد أو منطقة متخلفة)، يزعم كيم أن الخيار الأفضل واضح. يمكنني بسهولة أن أتخيل مستقبلاً قريباً حيث يبدأ الناس في اختيار روبوتات الذكاء الاصطناعي على نظرائهم من البشر - في ظل وجود دليل إحصائي على أن جراحي الذكاء الاصطناعي يعملون بأمان.

وبعيداً عن التحديات الأخلاقية والقانونية، هناك حاجة إلى المزيد من العمل لتمكين التنفيذ العملي. ستحتاج المستشفيات إلى الاستثمار في البنية الأساسية التي تدعم جراحة الروبوتات بالذكاء الاصطناعي، بما في ذلك الأجهزة المادية والخبرة الفنية للتشغيل والصيانة. بالإضافة إلى ذلك، سيكون تدريب الفرق الطبية على إدارة العملية أمراً بالغ الأهمية. فالأطباء سيحتاجون إلى فهم الآلة ومتى يكون التدخل ضرورياً، وفي النهاية تحويل الجراحين البشريين من المهام الجراحية المباشرة إلى أدوار تركز على الإشراف والسلامة.

جراحات بسيطة أولاً

على المستوى العملي، يتصور الباحثون تقدماً تدريجياً، بدءاً بجراحات أبسط وأقل خطورة مثل إصلاح الفتق والتقدم تدريجياً إلى عمليات أكثر تعقيداً. سيساعد النهج التدريجي في التحقق من موثوقية الروبوت مع معالجة المخاوف التنظيمية والأخلاقية بمرور الوقت، فضلاً عن مساعدة السكان على الثقة في الذكاء الاصطناعي لإجراء العمليات الحرجة للحياة.

يقول كريغر: «ما زلنا في المراحل الأولى من فهم ما يمكن أن تحققه هذه الآلات حقاً. الهدف النهائي هو الحصول على أنظمة جراحية مستقلة تماماً وموثوقة وقابلة للتكيف وقادرة على إجراء العمليات الجراحية التي تتطلب حالياً اختصاصياً مدرباً تدريباً عالياً».

* مجلة «فاست كومباني» خدمات «تريبيون ميديا»

اقرأ أيضاً